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Preface

Physics is a fundamental science, and those
who study it will gain an understanding of the
basic laws that govern everything from the very
small subatomic to the very large cosmic scale.
The study of physics provides us'with an
unparalleled power of analysis that is useful in
the study of the other sciences, engineering and
mathematics, as well as in daily life.

This fifth edition of Physics for the IB Diploma
follows the previous edition, but contains
material for the new syllabus that will be
examined for the first time in May 2009. It
covers the entire International Baccalaureate
(IB) syllabus, including all options at both
standard level (SL) and higher level (HL). It
includes a chapter on the role of physics in the
theory of knowledge (TOK), along with many
discussion questions for TOK. Each chapter
opens with a list of objectives, which include
the important formulae that will be covered in
that chapter. The questions at the end of each
chapter have been increased, and there are
answers at the end of the book for all those
involving calculation (and for some others too).

Part I of the book covers the core material and the
additional higher level (AHL) material. The title
and running heads of each chapter clearly
indicate whether the chapter is part of the core or
AHL. Part II covers the optional subjects. There are
now four options that are available to 5L students
only (Option A, Sight and wave phenomena;
Option B, Quantum physics; Option C, Digital
technology: and Option D, Relativity and particle
physics). The material for these is the same as the
corresponding AHL material, and so these four
SL options are neither repeated nor presented
separately (except for one chapter, Option Al, The

eye and sight, which is not part of the AHL core).
Three options (Option E, Astrophysics; Option F,
Communications; and Option G, Electromagnetic
waves) are available to both 5L and HL students.
Finally, there are three options (Option H, Special
and general relativity; Option I, Biomedical
physics; and Option |, Particle physics) that are
available to HL students only.

The division of this book into chapters and
sections usually follows quite closely the
syllabus published by the International
Baccalaureate Organization (IBO). This does not
mean, however, that this particular order
should be followed in teaching. Within reason,
the sections are fairly independent of each other,
and so alternative teaching sequences may be
used. It must also be stressed that this book is
not an official guide to the IB syllabus, nor is
this book connected with the IBO in any way.

The book contains many example questions and
answers that are meant to make the student
more comfortable with solving problems. Some
are more involved than others. There are also
questions at the end of each chapter, which the
student should attempt to answer to test his or
her understanding. Even though the IB does not
require calculus for physics, | have used
calculus, on occasion, in the text and in the
questions for the benefit of those students
taking both physics and mathematics at higher
level. They can apply what they are learning in
mathematics in a concrete and well-defined
context. However, calculus is not essential for
following the book. It is assumed that a student
starting a physics course at this level knows the
basics of trigonometry and is comfortable with
simple algebraic manipulations.



xii Preface
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In many questions and examples | have not
resisted the temptation to use 10 m s* as the
numerical value of the acceleration due to
gravity. I have also followed the conventions of
symbols used by the IBO in their Physics Data
Booklet, with one major exception. The Data
Booklet uses the symbol s for displacement.
Almost universally, the symbol s is reserved for
distance, and so s stands for distance in this
book, not displacement. Also, I have chosen to
call initial velocities, speeds, etc. by v, rather
than the IBO's u.

I wish to thank my wife, Ellie Tragakes, for her
great help and support. I am indebted to fellow
teacher Wim Reimert for his careful reading of
the book and his extensive comments that have
improved the book - I thank him sincerely. I
would like to thank Geoff Amor, who has edited
the new material for the fifth edition,
implemented my changes, and made many
suggestions for its improvement.

K. A, Tsokos
Athens
May 2007

A note to the reader

The main text of each chapter contains a
number of different features, which are clearly
identified by the use of headings or by other
typographical means, as outlined below,

Learning outcomes/objectives

These are provided as bullet lists at the
beginning of each chapter, and indicate what
you will have learned or be able to do when you
have finished studying the chapter.

Important results, laws, definitions and

significant formulae

Particularly important material, such as
important results, laws, definitions and
significant formulae, appear in a shaded box.

Example questions

These occur in nearly all of the chapters. They
are indicated by the heading 'Example
question(s)’ and all have a full answer. Itis a
good idea to attempt to solve these problems
before reading the answers. There are over 500
such example questions in this book,

Material for higher level students
This material is highlighted in a shaded box
that is labelled ‘HL only’.

Material that is outside the IB syllabus
Some material is included that is outside the IB
syllabus and will not be examined in the IB
exams. It is included here for two reasons. The
first is that I believe that it clarifies syllabus
material and in some cases it does so in
essential ways. The second is that it gives the
interested student a more rounded view of the
subject that is not bounded by the rigid
syllabus content. Such material is highlighted
in a shaded box that is labelled ‘Supplementary
material’. There is also a small amount of other
similar material with different labels.

Questions

Each chapter ends with a set of numbered
questions, Answers to all those that involve
calculation are given at the end of the book.
Answers are also provided for some other
questions where it is useful for students to be
able to check their answers.
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The realm of physics !

Physics is an experimental science in which measurements made must be expressed in
units. In the Interational System of units used throughout this book, the SI system, there
are seven fundamental units, which are defined in this chapter. All quantities are expressed
in terms of these units directly or as a combination of them.

| Objectives

By the end of this chapter you should be able to:
» appreciate the order of magnitude of various quantities;
« perform simple order-of-magnitude calculations mentally;

» state the fundamental units of the SI system.

Orders of magnitude and units

How many molecules are there in the sun? This
may sound like a very difficult question with
which to start a physics textbook, but very basic
physics can give us the answer. Before we try to
work out the answer, guess what you think the
answer is by giving a power of 10. The number
of molecules in the sun is 10 to the power:...?

To answer the question we must first have an
idea of the mass of the sun. You may know this,
or you can easily look it up (to save you doing
this for this example, we can tell you that it is
about 10%" kg). Next, you will need to know
what the chemical composition of the sun is. It
is made up of 75% hydrogen and 25% helium,
but as we are only making a rough estimate, we
may assume that it is made out of hydrogen
entirely. The molar mass of hydrogenis2 g
mol ! and so the sun contains 10%/2 mol = 5 x
10° mol. The number of molecules in one mole
of any substance is given by the Avogadro
constant, which is about 6 % 10, so the sun
has around 5 X 10% x 6 x 10¥ = 3 x 10
molecules. How close was your guess?

The point of this exercise is that, first, we need
units to express the magnitude of physical
quantities. We must have a consistent set of
units we all agree upon. One such set is the
International System (SI system), which has
seven basic or fundamental units. The units

of all other physical quantities are combinations
of these seven. These units are presented later
in this section. The second point is that we
have been able to answer a fairly complicated
sounding question without too much detailed
knowledge - a few simplifying assumptions
and general knowledge have been enough. The
third point you may already have experienced.
How close was your guess for the number of
molecules in the sun? By how much did your
exponent differ from 562 Many of you will have
guessed a number around 10" and that is way
off. The number 10" is a huge number - you
cannot find anything real to associate with
such a number. The mass of the universe is about
10™ kg and so repeating the calculation above we
find that the number of hydrogen molecules in
the entire universe (assuming it is all hydrogen)
is about 10”™ - a big number to be sure but
nowhere near 10", Part of learning physics is
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to appreciate the magnitude of things - whether
they are masses, times, distances, forces or just
pure numbers such as the number of hydrogen
molecules in the universe. Hopefully, you will be
able to do that after finishing this course.

The SI system

The seven basic 5] units are:

1 The metre (m). This is the unit of distance. It is
the distance travelled by light in a vacuum in a
time of 1/299 792 458 seconds.

2 The kilogram (kg). This is the unit of mass. It is
the mass of a certain quantity of a platinum-
iridium alloy kept at the Bureau International
des Poids et Mesures in France.

3 The second (s). This is the unit of time. A second is
the duration of 9 192 631 770 full oscillations of
the electromagnetic radiation emitted in a
transition between the two hyperfine energy
levels in the ground state of a caesium-133 atom.

4 The ampere {A). This is the unit of electric
current. It is defined as that current which,
when flowing in two parallel conductors 1 m
apart, produces a force of 2 X 107" Non a
length of 1 m of the conductors.

5 The kelvin (K). This is the unit of temperature. It
is 573 of the thermodynamic temperature of
the triple point of water.

6 The mole (mol). One mole of a substance
contains as many molecules as there are atoms
in 12 g of carbon-12. This special number of
molecules is called Avogadro’s number and is
approximately 6.02 x 107,

7 The candela (cd). This is a unit of luminous inten-
sity. It is the intensity of a source of frequency
540 % 10" Hz emitting g W per steradian.

The details of these definitions should not be
memorized.

In this book we will use all of the basic units
except the last one. Some of these definitions
probably do not make sense right now — but
eventually they will.

Physical quantities other than those above have
units that are combinations of the seven

fundamental units. They have derived units. For
example, speed has units of distance over time,
metres per second (i.e. m/s or, preferably, m s™').
Acceleration has units of metres per second
squared (i.e. m/s*, which we write as m s™%). In
other words, we treat the symbols for units as
algebraic quantities. Similarly, the unit of force
is the newton (N). It equals the combination
kg m s % Energy, a very important quantity in
physics, has the joule (J) as its unit. The joule is
the combination N m and so equals (kg m s~ m),
or kg m* s~ The quantity power has units of
energy per unit of time and so is measured in
] s7'. This combination is called a watt. Thus,
IW=(1Nms')=(1kgms?*ms)
=1kgm?s™,

Occasionally, small or large quantities can be
expressed in terms of units that are related to
the basic ones by powers of 10. Thus, a
nanometre (symbol nm) is 107* m, a microgram
(g) is 107° g = 10" kg, a gigaelectron volt
{GeV) equals 107 eV, etc. The most common
prefixes are given in Table 1.1.

107% atto- a 10’ deka- da"
10"  femto- f 10° hecto- h*
10"  pico- p 10° kil k
107 nanc- n 10° mega- M
10" mice @ 10° gg+ G
107" milli- m 10" tera- T
1072 centi- ¢ 10" peta- P*
1077 deci- d 10" exa- B
"Rarely used.

Table 1.1 Common prefixes.

When we write an equation in physics, we have
to make sure that the units of the quantity on
the left-hand side of the equation are the same
as the units on the right-hand side. If the units
do not match, the equation cannot be right. For
example, the period T (a quantity with units of
time) of a pendulum is related to the length

of the pendulum [ (a quantity with units of
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length) and the acceleration due to gravity g
(units of acceleration) through

T 2.Tr\/I
q

The units on the right-hand side must reduce to
units of time. Indeed, the right-hand side units

are
m \I||"_
— - s
—] 8-=5
¥ ms-2

as required (note that 2 is a dimensionless
constant). The fact that the units’ on both sides
of an equation must match actually offers a
powerful method for guessing equations.

For exampie, the velocity of a wave on a string is
related to the length | and mass m of the string,
and the tension force F the string is subjected to.
How exactly does the velocity depend on these
three variables? One guess is to write

v =cF*lIYm*

where ¢ is a numerical constant (a pure number
without units) and x, y and z are numbers to be
determined. There could be some confusion
here because m stands for mass but we also use
the symbol m for the metre. To avoid this we
will use the notation [M] to stand for the unit of
mass, [I] for the unit of length, [T] for the unit
of time, etc. Then, looking at the units of the
last equation we have that

]
(7]

LNTI™! = Py

= (IMILIITI?) (L1 ImMF

The two equations match if the exponents of [L],
[M] and [T] match - that is, if

x+z=0
X+y=1
—T% =]

These equations imply that

::c-l - and z——l
=3 Y=3 =73

In other words, the original formula becomes
Fl

v=cF ' RRm~ 2 = ¢ [ —
m

Obviously this method cannot give the value of
the dimensionless constant ¢. To do that we
have to learn some physics!

Tables 1.2-1.4 give approximate values for some
interesting sizes, masses and time intervals.

Expressing a quantity as a plain power of 10
gives what is called the ‘order of magnitude’ of
that quantity. Thus, the mass of the universe

Distance to edge of observable universe 10%
Distance to the Andromeda galaxy 10%
Diameter of the Milky Way galaxy 10
Distance to nearest star 10%
Diameter of solar system 10"
Distance to sun 10"
Radius of the earth 107
Size of a cell 10"
Size of a hydrogen atom 10~"
Size of a nucleus 107"
Size of a proton 10"
Planck length 0°*

Table 1.2 Some interesting sizes.

The universe 1072
The Milky Way galaxy 1+
The sun 10%
The earth 10%
Boeing 747 (empty) 10%
An apple 0.25
A maindrop 10
A bacterium 0"
Smallest virus 10-0
A hydrogen atom 10-F
An electron 10~

Table 1.3 Some interesting masses.
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Age of the universe 107
Age of the earth 10"
Time of travel by light to nearby star 10°
One year 107
One day 10°
Perind of a heartbeat 1
Period of red light 10-%
Time of passage of light across a nucleus 1074
Planck time 102

Table 1.4 Some interesting time intervals,

has an order of magnitude of 10* kg and the
mass of the Milky Way galaxy has an order of
magnitude of 10" kg. The ratio of the two
masses is then simply 10",

Fundamental interactions

There are four basic or fundamental
interactions in physics. However, in 1972, the
electromagnetic and weak interactions were
unified into one - the electroweak interaction.
In this sense, then, we may speak of just three
fundamental interactions (see Figure 1.1).

Gravitational Gravitational
Electromagnetic —

s  Electroweak
Weak (nuclear force)
Colour {or strong nuclear foree) Colour

Figure 1.1 The fundamental interactions of
physics. Since 1972, the electromagnetic and
weak interactions have been shown to be part of
a generalized interaction called the electroweak
interaction.

Example questions

Let us close this chapter with a few problems
similar to the one we started with. These
problems are sometimes known as Fermi
problems, after the great physicist Enrico Fermi,
who was a master in this kind of estimation.

()1 srrTeTeTEa et MM EEISITEESMATI ST
How many grains of sand are required to fill the
earth? (This is a classic problem that goes back to
Aristotle.)

Answer

The radius of the earth is about 6400 km, which we
may approximate to 10 000 km. The volume of the
earth is thus approximately 8 x (10 x 10°)" m’ =
8 x 10" m'. We are assuming a cubical earth of
side equal to twice the radius. This is a simplifying
assumption. The true volume is 7R = 1.1 x
10°" m*, which agrees with our estimate (we are
only interested in the power of 10 not the number
in front). The diameter of a grain of sand varies of
course but we will take 1 mm as a fair estimate.
Then the number of grains of sand required to fill
the earth is

8x 10" m’

it £ R il

Q! ST e TaITES
Estimate the speed with which human hair grows.

Answer

I cut my hair every 2 months and the barber cuts
a length of about 2 cm. The speed is thus

2% 107

B 10°°
ms = =
2% 30 % 24 = 60 = 60

T 3% 2% 36x10°
o
T exa0 240
=4 %10 ms™'

Q3 ErrERT T e T T VI TSSO e
If all the people on earth were to hold hands in a
straight line, how long would the line be? How
many times would it wrap around the earth?

Answer

Assume that each person has his or her hands
stretched out to a distance of 1.5 m and that the
population of earth is 6 x 10" people. Then the
length would be 6 x 10" x 1.5m =9 x 10" m.
The circumference of the earth is 27R = 6x

6 % 10" m = 4 x 10" m and so the line would

w1

wrap 7= = 200 times around the equator.

=10
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()4 B3IeeIsIS T TFFTTIITEISTIEE I SIS NI EAERS TFEY
How many revolutions do the wheels of a car
make before it is junked?

Answer

We assume that the car runs 250 000 km before

it is junked and that the wheels have a radius of

30 ecm. Then the number of revolutions is

2.5 x 10° 2.5
=

2w »x 0.3 2%

11{]“% "

05 BRI T T eI T
What depth of car tyre wears off with each turn?
(This is another classic problem.)

Answer

We assume that a depth of 5 mm wears off every
60 000 km. (These numbers are ‘standard’ for
people who own cars.) Then, for a wheel of
radius 30 cm the number of revolutions is (see
previous problem) 221 =~ _£-107 =~ 3 x 107

and so the wear per revolution is ;= mm/rev =

1077 mm/rev.

Questions

Have a look through these questions and answer
any that you can. However, don’t worry about
any you can’t answer; leave them for now and
come back to them when you reach the end of
the course.
1 How long does light take to travel across a
praton
2 How many hydrogen atoms does it take to
make up the mass of the earth?
3 What is the age of the universe expressed in
units of the Planck time?

4 What is the radius of the earth (6380 km)
expressed in units of the Planck length?

5 How many heartbeats are there in the lifetime
of a person (75 years)t

6 What is the mass of our galaxy in terms of a
solar mass?

7 What is the diameter of our galaxy in terms of
the astronomical unit, i.e. the distance
between the earth and the sun?

8 The molar mass of water is 18 g mol™'. How
many molecules of water are there in a glass
of water (of volume 0.3 L)¢

9 Assuming that the mass of a person is made
up entirely of water, how many molecules are
there in a human body (of mass 60 kg)?

10 Assuming the entire universe to be made up of
hydrogen gas, how many molecules of
hydrogen are there?

11 Give an order-of-magnitude estimate of the
density of a prolon.

12 How long does light from the sun take to
arrive on earth?

13 How many apples do you need to make up
the mass of an average elephant?

14 How many bricks are used to build an
average two-storey family house?

15 (a) How many metres are there in 5.356 nm?
(b) How many in 1.2 fm?
(c) How many in 3.4 mm¢

16 (a) How many joules of energy are there in
4.834 M)¢
(b) How many in 2.23 pJ?
(c) How many in 364 C)?

17 (a) How many seconds are there in 4.76 nst
(b) How many in 24.0 ms?
¢} How many in 8.5 as?

18 What is the velocity of an electron that covers
a distance of 15.68 mm in 87.50 ns?

19 An electron volt (eV) is a unit of energy equal
to 1.6 =% 107" |. An electron has a kinetic
energy of 2.5 eV.

{a) How many joules is that?
(b) What is the energy in eV of an electron
that has an energy of 8.6 x 107" J?

20 What is the volume in cubic metres of a cube
of side 2.8 cm{

21 What is the side in metres of a cube that has a
volume of 588 cubic millimetres?

22 One inch is 2.54 cm and one foot has
12 inches. The acceleration due to gravity is
about 9.8 ms™*, What is it in feet per square
second?

23 One fluid ounce is a volume of about
2.96 x 107% m'. What is the side, in inches, of



1.1 The realm of physics 7

24

25

26

27

28

29

30

a cube whose volume is 125 fluid ounces?
(One inch is 2.54 cm.)

A horsepower (hp) is a unit of power equal to
about 746 W. What is the power in hp of a
224 kW car engine!

Give an order-of-magnitude estimate for the
mass of:

{a) an apple;

(b) this physics book;

(c) asoccer ball.

Give an order-of-magnitude estimate for the
time taken by light to travel across the
diameter of the Milky Way galaxy.

A white dwarf star has a mass about that of
the sun and a radius about that of the earth.
Give.an order-of-magnitude estimate of the
density of a white dwari.

A sports car accelerates from rest to 100 km per
hour in 4.0 s. What fraction of the acceleration
due to gravity is the car’s acceleration?

Give an order-of-magnitude estimate for the
number of electrons in your body.

Give an order-of-magnitude estimate for the
gravitational force of attraction between two
people 1 m apart,

3

32

33

Give an order-of-magnitude estimate for the
ratio of the electric force between two
electrons 1 m apart to the gravitational force
between the electrons.

The frequency f of oscillation (a quantity with
units of inverse seconds) of a mass m attached
to a spring of spring constant k (a quantity
with units of force per length) is related to m
and k. By writing f = cm*k* and matching
units on both sides show that

i = cﬁ, where ¢ is a dimensionless
constant,

Without using a calculator estimate the value
of the following expressions and then
compare with the exact value using a
calculator:
(al EI
{b) 2.80 = 1.90;
312 x 480

160
899x10°x7x 107" x7 x 10"

(8 x 107)? "
6.6 x 107" % 6 x 10
(6.4 x 10%)°

ich

(d)

(e
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Uncertainties and errors

This chapter introduces the basic methods of dealing with experimental error and
uncertainty in measured physical quantities. Physics is an experimental science and
often the experimenter will perform an experiment to test the prediction of a given
theory. No measurement will ever be completely accurate, however, and so the result of
the experiment will be presented with an experimental error. Thus, in comparing the
results of an experiment with the prediction of the theory being tested, the
experimenter will have to decide if the disagreement between theory and experiment
is due to failure of the theory or whether the disagreement falls within the bounds of

experimental error and so can be tolerated.

5

Dbjectives

By the end of this chapter you should be able to:

» state the various types of errors that may arise in the measurement of a
physical quantity;

= state the difference between accuracy and precision;

» draw a line of best fit;

» appreciate the importance of significant digits.

Errors of measurement

There are two main types of error of
measurement or observation. They can be
grouped into random and systematic even though
in many cases it is not possible to sharply
distinguish between the two. We may say that
random errors are almost always the fault of
the observer whereas systematic errors are due
to both the observer and the instrument being
used. In practice, all errors are a combination of
the two.

A random error is characterized by the faet that

it is revealed by repeated measurements (the
measurements fluctuate about some value - they |
are sometimes larger and sometimes smaller)
whereas a systematic error is not. Random i
errors can be reduced by averaging over

repeated measurements, whereas errors that
are systematic cannot.

We may also consider a third class of errors
called reading errvors. This is a familiar type of
error that has to do with the fact that it is often
difficult to read the instrument being used
with absolute precision. This type of reading
error is inherent in the instrument being used
and cannot be improved upon by repeated
measurements. If a length is measured using a
ruler whose smallest division is a millimetre
and the end of the object to be measured falls
in berween two divisions on the ruler, it is easy
to determine that the length is, say, between
14.5 cm and 14.6 cm, but there is some
guesswork involved in stating that the length is
14.54 cm. It is standard practice to assume that
the reading error is half the smallest division
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interval on the instrument. For the ruler, this
interval is 1 mm, and half of this is 0.5 mm or
0.05 cm. We may state the position of the right
end of the object we are measuring as

{14.54 £+ 0.05) cm. In practice, though, to
measure the length means also finding the
position of the left end of the object, and there
is a similar uncertainty in that measurement.
Suppose that the left end is recorded at

(1.00 4 0.05) cm. The length is then the
difference of the measurements for the
positions of the right and left ends of the
object, and this is 13.54 cm. As we will see later,
the subtraction of the two measurements
implies that the uncertainties will add, so that
we end up with a length measurement that is
uncertaintby 4+ 0.1 cm. In that case it does not
make sense to quote the answer for the length
to more than one decimal place, and we may
quote the length as (15.5 £ 0.1) cm.

For digital instruments we may take the
reading error to be the smallest division that
the instrument can read. So a stopwatch that
reads time to two decimal places, e.g. 25.38 5,
will have a reading error of £0.01s, and a
weighing scale that records a mass as 1845 g
will have a reading error of = 0.1g, The typical
reading errors for some common instruments
are listed in Table 2.1,

Ruler =0.5 mm
Vernier calipers =£0.05 mm
Micrometer =0.005 mm
Volumetric (measuring) cylinder *0.5mL
Electronic weighing scale *0.1g
Stopwatch =001 s

Table 2.1 Reading errors for some common
instruments.

Random errors

If a measurement is repeated many times, it can
be expected that the measurement will be too
large as often as it will be too small. So, if an
average of these measurements is taken, the

error will tend to cancel. The experimental
result of the measurement of a given quantity x
will thus be the average of the individual
measurements, i.e.

Xy 4+ Xz 4o+ Xy
N

where N is the total number of measurements.
We then define the deviation of each individual
measurement from the average by Ax; = x; — X.
If the absolute magnitudes of all these
deviations are smaller than the reading error,
then we can quote the experimental result as

X =

X + reading error

However, if the deviations from the mean are
larger in magnitude than the reading error, the
experimental error in the quantity x will have
to include random errors as well. To estimate
the random error we calculate the quantity

Jii’l’fﬂz + (Axg )2+ -0+ (Axy)?
ER N—1

which is called the unbiased estimate of the
standard deviation of the N measurements x;.
(With graphic calculators this can be done quite
easily and quickly.) The result of the experiment
is then expressed as

i+e
To illustrate these points consider the
measurement of a length using a ruler. The
reading error according to one observer is
+0.1 cm. The experimenter produces a table of
results and, after computing the average of the
measurements, the deviation and its square are
also inserted in the table - see Table 2.2,

14.88 0.09 0.0081
14.84 0.05 0.0025
15.02 0.23 0.0529
14.57 —0.22 0.0484
14.76 =0.03 0.0009
14.66 -3 001659

Table 2.2 A table of results.
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The average 15 14.79 cm and the standard
deviation of these measurements is 0.1611 cm.
The random error is larger than the reading error
and so it must be included in the result. The
result of the measurement is thus expressed as
14.8 + 0.2 em. This is much more realistic than
simply quoting the average and the reading error,
14.79 + 0.1 cm. Note that it does not make sense
to quote the average to more than one decimal
point as the error makes even the first decimal
point uncertain. Note also that once a large
number of measurements are accumulated,
further measurements do not appreciably change
the estimate of the error. Thus, it is of little use to
take, say, 50 measurements of the length of the
object in the example above.

Note also, hnal]y. that even the calculation of a
standard deviation is not all that necessary. The
largest deviation from the mean in Table 2.2 is
0.23 ¢m, which we may round to 0.2 cm and
accept that as a rough estimate of the error.

Systematic errors

The most common source of a systemartic error
is an incorrectly calibrated instrument. For
example, consider a digital force sensor. When
the sensor is to be used for the first time, it
must be calibrated. This means that we must
apply a force whose value we are confident we
know, say 5.0 N, and then adjust the sensor so
that it too reads 5.0 N. If we apply the 5.0 N force
and then adjust the instrument to read 4.9 N,
the instrument will be incorrectly calibrated. It
will also be incorrectly calibrated if the sensor is
adjusted to read 5.0 N when the ‘known’ force
that we apply is not really 5.0 N. [f we use this
sensor to verify Newton's second law, we would

FNt vivl
ohserved

expected

v .

expect to get a straight-line graph through the
origin if we plot the net force on the body versus
its acceleration. Since all measurements of the
force will be off by the same amount, the
straight line will not pass through the origin.
The systematic error in the force would then be
the vertical intercept (see Figure 2.1a).

A systematic error will also arise if we use an
instrument that has a zero error. For example, if an
ammeter shows a current of 0.1 A even before it is
connected to a circuit, it has a zero error. [t must
be adjusted to read zero. If the adjustment is not
done, every measurement of current made with
this ammeter will be larger than the true value of
the current by 0.1 A. Thus, if this ammeter is used
to investigate the voltage—current characteristic of
an ohmic resistor, we will not get the expected
straight line through the origin but a straight line
that misses the origin. The systematic error in the
current would then be the horizontal intercept
(see Figure 2.1b).

Systematic errors are not always easy to
estimate but sometimes the direction of the
error is, Thus, suppose that an experimenter
assumes that no friction is present in an
experiment on an air track, where the velocity
of an object sliding on it is measured after
having travelled a certain distance. A small
amount of friction will slow down the object
and so the velocity measurements will be
consistently lower than their true values. It is
difficult though to estimate by how much.

A systematic error will also arise if the
experimenter makes the same error for all the
measurements she takes. For example, consider
measuring a length with a ruler. The ruler is
aligned with the object to be
measured and the experimenter
must then position her eye

expected  directly above the ruler. If,

Ll

() afm 52 (b}

Figure 2.1 The types of systematic error that arise from incorrectly
calibrated instruments and instruments that have a zero error.

observed  however, the experimenter
/ consistently stands to the side,
" as shown in Figure 2.2, the
A

measured value will always be
larger than the true length. If
she stands on the other side, the
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[ p— | )

Figure 2.2 An example of a systematic error that is
due to the observer.

measured value will always be smaller than
the true length.

A similar systematic error would occur in
measuring the volume of a liquid inside a
graduated tube if the tube is not exactly
vertical. The measured values would always be
larger than the true value.

Accuracy and precision

In everyday language, the words ‘accuracy’ and
‘precision’ are usually taken to mean the same
thing, but this is not the case in physics.

e e e S T = = e o gy e

SUTEIMenLs
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STk RLULEL CLLIUL Ao add el Y : tlave
TN aTnS e Y AP s fi e [ T S S L Tt

el byl B e gl e o &2 T
B orrg
siiic e L
true value
' accurate but
mw H H ‘ HE ‘ not precise
: : L g
precise but not precise, ‘I‘: precise
not accurate not accurate il and
i accurate

Figure 2.3 The meaning of accurate and precise
measurements, Four different sets of six
measurements each are shown.

Measurements of a physical quantity can be
accurate but not precise, or precise but not
accurate. Consider, for example, measurements
of voltage taken with a high-quality digital
voltmeter that suffers from a systematic error.
The voltmeter allows us to record the voltage
to many significant figures and repeated
measurements of the same voltage give
essentially the same reading. These
measurements are very precise but they are
not accurate, since the systematic error in

the readings means that they are not

representative of the true voltage. Similarly,
readings can be accurate in that their average
gives the correct reading, but if individual
readings differ wildly from each other, they are
not precise.

Significant digits

Let us multiply the numbers 24 and 328. The
answer is 7872. However, if these numbers are
the result of a measurement, then at the very
least we would expect that the last digit of each
is uncertain. In other words, the first number
could be anything from 23 to 25 and the other
from 327 to 329. The product could thus range
from 7251 to 8225. Thus, it makes no sense to
retain so many digits in our answer for the
product of 7872. The first number has been given
to two significant digits, the second to three.
Thus, the answer for the product must be given
to no more than two significant digits — that is,
as 7900 or 79 % 10°. Keeping only two significant
digits in the answer for the product ensures that
the process of multiplication does not introduce,
incorrectly, additional significant figures.

The rules for significant figures are as follows.

The leftmost non-zero digit is significant and is
in fact the most significant digit in the number.
If the number has no decimal point, the
rightmost non-zero digit is significant and is in
fact the least significant. If the number does
have a decimal point, the least significant digit
is the rightmost digit (which may be zero). The
number of significant digits of a number is the
number of digits from the most to the least
significant. Thus, 0.345 has 3 as the most
significant digit and 5 as the least. The number
thus has three significant digits. In the number
0.000 0006 the most and least significant digit
is 6 and so we have one significant digit. The
number 5460 has three significant digits (no
decimal point hence the last zero does not
count), 54 has two and 300 000 has one.
Similarly, 3.450 has four significant digits,

54.0 has three and 0.000 500 has three.
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» In multiplication or division (or raisinga
number to a power or taking a root) the
result must have as many significant

 digits as those of the number with the
least significant digits entering the
operation. £

Line of best fit

[f we have reason to suspect that the data
points we have plotted fall on a straight line,
we must draw the best straight line through
the points. This means using a ruler and
choosing that line which goes through as many
data points as possible in such a way that the
distances between the line and the points on
one side of it are, on average, the same as the
distances between the line and points on the
other side of it.

Thus, suppose that in an experiment to verify
Hooke's law, data for the tension and extension
of a spring are collected and plotted as shown
in Figure 2.4. The experimenter has included
vertical uncertainty bars representing an
uncertainty of +10 N in the values of the tension
(the length of the vertical bar is thus 20 N).
Uncertainties in the extension could also be
shown by placing horizontal bars at the
positions of the data points, but we will not do
this here,

P

o !
60 F I

a0 +
20 ‘, | | |

| |
0f 0.0 02 03 04 05

v'm

e
(.6
Figure 2.4 Data points plotted together with

uncertainties in the values for the tension.

The experimenter then draws the line of best fit
through the data points and obtains a straight
line in the graph shown in Figure 2.5. The line
of best fit will ideally pass through the error
bars of all the data points. Note that we never join
points by straight-line segments. The slope of this
line is 200 N m™" and this represents the spring
constant.

120}
100 F

| 1 i ! —
1] 1 0.2 0.3 0.4 0.5 0.6 .l

Figure 2.5 The line of best fit through the data
points.

In many experiments it will be necessary to
obtain the slope (gradient) of the graph. Here
the slope of this line is 200 N m ™' and
represents the spring constant. To find the
slope one must use the line of best fit and not
data points (see Figure 2.6). We must take two
points on the line of best fit, which must be
chosen to be as far apart as possible and then
apply the formula

Ay
slope = —
Ax

line of best fit

Y
v

Figure 2.6 Finding the slope of a straight line uses
the line of best fit and two widely separated
points on the line of best fit,
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Questions

A student measured a given quantity many
times and got the results shown in Figure 2.7.
The true value of the quantity is indicated by
the dotted line. Should she continue
accumulating more data in the hope of getting
a result that agrees with the true value?

mm ¢ true value
; .

data obtained

Figure 2.7 For question 1.

&

In the data of question 1, is the source of error
systematic or random?

In an experiment to measure current and
voltage across a device, the following data
was collected: (V, I) = [(0.1, 26), (D.2, 48),
(0.3, 65), (0.4, 90)). The current was measured
in mA and the voltage in mV. The uncertainty
in the current was £ 4 mA. Plot the current
versus the voltage and draw the line of best fit
through the points. Does the line pass through
the origin?

In a similar experiment, the following data
was collected for current and voltage: (V, 1] =
{(0.1, 273, (0.2, 44), (0.3, 60}, (0.4, 78)} with
an uncertainty of =4 mA in the current. Plot
the current versus the voltage and draw the

0.3

S EE——

0

line of best fit. Can it be claimed that the line
passes through the origin?

In yet another experiment, the following data
was collected for current and voltage: (V, I} =
[(0.1,29), (0.2, 46), (0.3, 62), (0.4, 80)}, with
uncertainty of =4 mA in the current. Plot the
current versus the voltage and draw the line of
best fit. Can it be claimed that the line passes
through the origin? The experimenter is con-
vinced that the straight line fitting the data
should go through the origin. What can allow
for this?

The velocity of an object after a distance x is
given by v* = 2ax where a is the constant
acceleration. Figure 2.8 shows the results of
an experiment in which velocity and distance
travelled were measured. Draw a smooth
curve through the points. Estimate the
acceleration, and the velocity of the object
aiter a distance of 2.0 m.

: - : L ——p fm
0.2 0.4 0.6 0.8

Figure 2.8 For question 6.
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Mathematical and graphical

techniques

This chapter is an introduction to the basic techniques of graphical analysis in
physics, in particular how to graph variables in order to obtain straight-line graphs.

Objectives

By the end of this chapter you should be able to:

|+ find the change in a variable given the changes in other variables related

{ to it;

| = transform the variables of an equation so that a linear relationship and graph
are obtained,

* extract relevant information from a graph;

* understand the need for assumptions in simplifying various situations.

Multiplicative changes

Given an equation that relates one variable, say
V. to one or more other variables, it is essential
that we learn how the value of y changes when
one (or more) of the other variables change
multiplicatively. Consider as a simple first
example the equation ;

y=cx

where ¢ is a constant. How does the value of y
change if x is tripled? Obviously, the value of y
is also tripled since y and x are directly
proportional to each other. More formally, let
us call y* the new value of y; then y' = c(3x) =
3(cx) = 3y. That is, the value of y is tripled as
expected. The answer in this case is simple since
the direct proportionality of the variables is
clear. When the variables are not so simply
related, the answer can still be easily found.

Suppose that we are given the variation with
tension I of frequency f

ST

2LV u
(the other variables in this equation are
constants). How does the frequency change if

the tension is tripled? Again we call the new
value of the frequency f' and then

AR o
'r_ZL m
T3
(55
=31

that is, the value of the frequency is increased
by a factor of root 3. Equivalently we could have
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written

ar

2 A
f =~

1
1
2L

it
= |- |:;._,

I
S

since all the common variables cancel out.

Similarly, the average kinetic energy of the
molecules of a gas depends on absolute
temperature through

1 2__3
imf—ﬂkr

If the temperature is doubled what happens to
the speed ¢? Taking ratios

%m[f”_iz B Sk(2T) B
mc? - skT -

(')’
2

2

= =v2c
The speed increases by +/2.

The pressure, volume, temperature and number
of molecules of an ideal gas are related by

pV = NKT

where k is a constant. If the pressure of a gas is
doubled while the temperature is halved and
the number of molecules is left unchanged,
what will be the new volume of the gas?

In this case the ratio method gives

epv NK(3)

pvV_ — NkT 2
2V _

1
Vi 2

Straight-line graphs

The easiest graph to deal with is that of the
straight line: y = mx +¢. In this form, the
constant m represents the slope (also known as
the gradient) of the straight line and ¢ the

i i | » o/m
1 5 1 15 20

Figure 3.1 The straightline graph of tension
versus extension.

intercept on the y (vertical) axis. Figures 3.1-3.3
show three examples of straight-line graphs.
Figure 3.1 represents a force F (plotted on the
vertical axis and measured in newtons, N) as a
function of distance x (measured in metres, m).
We can read off the intercept on the F axis as
1.2 N. The gradient can be measured to be

0.4 N m™'. Note that the units for the gradient
must be given. Thus, the equation of this line is
F =04Nm™") x + 1.2 N. It is usually
convenient not to mention units in the
equation of the line so that we can write the
simpler F = 0.4x + 1.2, but it is then crucial to
note that x must be expressed in metres so that
F ends up being expressed in newtons.

Figure 3.2 shows distance x on the vertical axis
(measured in metres) plotted as a function of
time | (measured in seconds). The intercept on
the vertical axis is —1.6 m and the gradient is
0.6 m s~ '. Thus, the equation of this line is

x =0.6(ms™")t — 1.6 m, or simply x = 0.6 — 1.6.

xm

4

3

2

|

0 : s 6 i

Figure 3.2 Graph of distance versus time.
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The third example (Figure 3.3) is a graph of
velocity ¥ (measured in metres per second) versus
time t (measured in seconds). The intercept on the
vertical axis is 2 m s ' and the gradient is

—02ms 2 Thusv = =02ms 3t + 2(ms™ Y, or
justy = —-0.2f + 2. |

wm 51
E

2

_al

Figure 3.3 Graph of velocity versus time.

As we will see in our study of motion in
mechanics, the area under a velocity-time graph
represents the displacement change of the moving
object.

Suppose that initially the object is at a
displacement of 20 m from the origin. To find the
displacement of the object 5 s after the start we
need to find the area that is bounded by the
graph and the time axis from{ =0stol =5s.
This shape is a trapezoid and its area is

(%) x 5= 7.5 m. Note that the units of the area
in this graph are units of distance, since we
multiply a velocity {m s ') by time (s). (If the
vertical axis represented a force measured in
newtons and the horizontal axis distance
measured in metres, the area in that case would
have units of N % m, i.e. joules.) This means that
the displacement atf =5sis 20m +7.5m =
27.5 m. The displacement at t = 10 s is found by
calculating the area bounded by the graph and
the time axis from [ = 0 to ! = 10 s, This area has
the shape of a triangle and so the area is

(25'°) = 10 m. The displacement at { = 10 s is
thus 20 m + 10 m = 30 m. After{ = 10 s, the
graph goes below the time axis. This means that
areas will now be counted as negative. Thus, to find
the displacement at { = 15 s we proceed as follows:

first find the area from{ = 0to ! = 10 5, which is
10 m. Then find the area from{ = 10sto! = 15s.
Itis —7.5 m. The area from ! = O to! = 15 s is thus
10 m =7.5 m = 2.5 m. The displacement at
t=15sisthus20m+25m=225m.

Getting a linear graph

In an experiment it is more than likely that when a
measured quantity y is plotted against another
measured quantity x on which it depends, a
straightline graph will not result. Thus, suppose
that the expected theoretical relationship between
the variables is y = ax* + b, as in Figure 3.4.

a _
2 8
LI L Lt

[
=

0 2 4 fi ] 1
Figure 3.4 Graph of the parabola y = ax® + b.

—l 1 |

* X

Then if we call the variable x” = v, the expected
relationship becomes y = aw + b, which is the
equation of a standard straight line with gradient
a and intercept b. Hence, we must plot y versus w
(i.e. x*) to get a straight line (see Figure 3.5).

6l
40

20

J I (1 1 L - ..1.'2
0 20 40 60 80 100
Figure 3.5 By graphing against the variable x? we

gel a straight line.
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Figure 3.6 Graph of the hyperbola xy =c.

v
o

Similarly if the expected relationship is xy =¢
(Figure 3.6), we call : = w in which case the
expected relationship is y = - = cw, which
again is a straight line going through the origin
with gradient ¢. Thus we must plot y versus 1 to

get a straight line (Figure 3.7).

| 1 | |
0 2 4 4] 8 10

—lp 1

Figure 3.7 We get a straight line by plotting
against the variable !.

If y and x are related by y = ae* + b, a straight
line is obtained by plotting y versus e*. The
gradient is then a and the intercept b. If the
relationship is y = ', we rewrite it as

1= "'"H*" so that a graph of | versus x* is a
straight line. Finally, a relationship such as

y? = ¢x? yields a straight line when y* is plotted

against x*.

Given a graph, we should be able to extract
information from it and use that information
to give a description of what is going on. In
Figure 3.8 the velocity is decreasing uniformly
from an initial value of 20 m s™'. The velocity
becomes zero at 2 s and then becomes negative.
The graph could represent the motion of an
object thrown vertically up with an initial
velocity of 20 m s~ '. The time of 2 s then
represents the time when the object reaches its
highest point.

wm 5!
20

10

1 2
3 —" %

=
b,

=10

-20

Figure 3.8 The velocity is decreasing uniformly
and becomes zero at 2 s. The object then
changes its direction of motion.

In Figure 3.9, displacement is graphed against
time for a given motion. The object is at
displacement zero at time zero and becomes a
maximum at 2 s. The object returns to its initial
position after 4 s.

ym

20
15

10

0 1 2 3

Figure 3.9 The displacement reaches a maximum
at 2 s and becomes zero at 4 s.

4 * iy
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L 1fs

0 2 4 6 ] 10

Figure 3.10 The velocity is becoming constant and
so the acceleration becomes zero.

In Figure 3.10, the velocity appears to be
approaching a constant value of about 20 m s~ 1.
The acceleration of the object thus approaches
ZETD,

Sine curves

When describing waves, as well as in many
other parts of physics, we deal with quantities
that depend on other variables through a sine
function, y = C sin{ax +b), with C, a and b
being constants. For example, the disturbance
of a harmonic wave at a distance x at a specific
instant of time can be shown to be

y=Asin [Zn;]

where the constants A and A are known as the
amplitude and wavelength of the wave. The
amplitude is thus the largest possible
disturbance (i.e. y value) and for the graph in
Figure 3.11 this can be read as 1.5 m. The
wavelength of the wave is extracted from the
graph by measuring the distance between two
consecutive peaks. In Figure 3.11 we thus find a
wavelength of 2 m.

Similarly, the disturbance of a harmonic wave
looked at as a function of time is given by

y=Asin [Enr?:|

where A is again the amplitude (in Figure 3.12
it has a value of 0.4 m) and T is the period of

wim
1.5}
{J-S A A
0f 2 4 6 10
-5
-1
-1.5
Figure 3.11 Graph of a harmonic wave as a

function of position. The wavelength of the
wave can be determined from this graph.

x’m

wm

0.4 -

0.2

04

Figure 3.12 Graph of a harmonic wave as a
function of time, The period of the wave can be
determined from this graph.

the wave. The period is found by taking the
time separation of two consecutive peaks; in
Figure 3.12, T = 0.5s.

Making assumptions

When we solve a physics problem, we always
make assumptions that simplify the problem.
Sometimes we are careful to list our
assumptions and sometimes not.

For example, in most of the chapters on
mechanics we will be solving problems
involving ‘bodies’ in motion acted upon by
forces. The *bodies’ can be anything from
human beings to leaves, bricks, cars or planets.
However, we will always be treating them as
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point particles, because this simplifies the
problem. We will mostly ignore frictional forces
unless told otherwise, because again this
simplifies the problem. But we must always be
aware that our solution has been derived under
various assumptions and so the real solution
might differ if the effects of the factors we
neglected are taken into account. We also,
usually, assume that strings (and springs) have
no mass - the famous physics strings. This
makes life easier and the assumption is good
provided the other bodies in the problem really
have masses much larger than that of the
string. '

When studying thermal physics we usually
don't take into account the fact that thermal
energy is always lost to the surroundings no
matter how careful we have been to prevent
that. If you were asked to calculate the number
of atoms in your body, you would have to make
a simplifying assumption otherwise the
problem is hopelessly difficult - pretending
that all your mass is made of out of water is
such a simplifying assumption. You must then
justify why it is a good simplifying assumption.
In dealing with gases we assume that the gas is
ideal. This is a good assumption for the air in a
football but not a very good one for the
material of a star that is about to become a
white dwarf!

In the chapters on electricity you will learn
about Coulomb’s law, which allows us to find
the force between two spherical charges. We
cannot use this law to find the force between
two plane sheets of charge though. Using
Coulomb's law will only be an estimate of the
force, not a precise calculation of it. Under
certain conditions (which we must identify) this
estimate may be a very good approximation to
the real answer. In other cases it might not be.
In electric circuits we usually assume that
connecting wires and ammeters have no
resistance. If a device used in the circuit has a
resistance of a few tens of ohms, this
assumption is good. But if the device has a very
low resistance, comparable to that of the
connecting wires and the ammeter, the

assumption is not good. Similarly, voltmeters
are assumed to have an infinite resistance, This
means, in practice, a resistance much larger
than the rest of the resistors in the circuit. If the
largest resistor in the circuit is 100 ohms and
the voltmeter has a resistance of 100 000 ochms
the assumption is good. But if you are dealing
with 100 000 ohm resistors the assumption of
an infinite voltmeter resistance breaks down.

So, part of learning physics involves identifying
assumptions in a problem and being able to
explain whether the assumptions are justified
or not.

Questions

1 The pressure of an ideal gas is 4 atm. If the
only change is to increase the temperature by
a factor of 4, what will the new pressure of
the gas be? (Use pV = NKT.)

2 The kinetic energy of a mass m is given by
smv?. If the speed v is doubled, by what
factor does the energy change?

3 The kinetic energy (£, = $mv?) of a body

doubles. By what factor did the speed
increase!

4 A constant force F brings a body of mass m
and initial speed v to rest over a distance d. If
the initial speed doubles, over what distance
will the same force stop the same body? (Use
vi=122)

5 The electric force between two charges
3, and Q. a distance r apart is given by
F = k22 where kis a constant.

{a) If both charges double, by what factor
does the force between them increase?

(b} If both charges double but the force
between them stays the same, by what
factor did their separation change?

6 The frequency of a standing wave on a string

of fixed length L kept under tension T is given
by f= g where ¢ is a constant. By what
factor should the tension be changed so that
the frequency triples?

7 The period of a pendulum of length L is given
by T = 2m,/L, where g is a constant. If the
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period doubles, by what factor did the length
change?

The frequency of oscillation of a mass m
attached to a spring is given by 7 = —ﬁf

where k is a constant. If the frequenc};'
increases by a factor of 4, by what factor did

the mass change?

The power radiated by a body kept at a
temperature T is given by P = kT*, where kis
a constant. If the temperature is doubled, by
what factor does the power increase?

The period of a planet around the sun is given
by T¢ = kR*, where k is a constant and R is
the mean distance of the planet from the sun.,
A planet orbits the sun at a distance from the
sun that is twice the distance of earth from the
sun. What is the period of this planet. (The
earth’s period is one year.)

When a strong wind creates waves on a pond,
a piece of cork floating in the water oscillates
so that its distance from the bottom of the
pond is given by the graph in Figure 3.13.

depthim
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Figure 3.13 For question 11.

12

(a) What is the depth of the pond?

(b) What is the frequency of the wave
travelling on the pond?

(c) What is the amplitude of the wave?

The image of an object a distance a from a
lens is formed at a distance b from the lens,
where a and b are related through the
equation £ + + = % and [ is the (constant)
focal length of the lens.

13

14

15

16

{a} If a set of data for a and b is collected,
how should it be plotted in order to give a
straight line?

(b} How can the focal length of the lens be
measured from the graph?

The pressure of a fixed quantity of gas at
constant volume is related to temperature in
kelvin by

r

{a) What form does a graph of pressure versus
temperature take?

{b) 1f the temperature is expressed in degrees
Celsius (T(K) = T("C) + 273) what does a
graph of pressure versus temperature give?

The period of a planet around the sun is
related to the mean distance of the planet
from the sun through Kepler's third law

T = constant = R*

If a student plots the period T on the vertical
axis, what must be plotted on the horizontal
axis in order that the resulting graph is a
straight line?

The kinetic energy of a mass m moving in a
straight line with speed v is given by

E. = 1mv', where the speed is related to
acceleration a (assumed constant) and
distance travelled d through v* = 2ad. What
would a graph of E, versus d give?

In the photoelectric effect, light of frequency
f falling on a metallic surface causes the
emission of electrons of kinetic energy E,.
Einstein’s formula relates these through

E.=hf—¢

where ¢ and h are constants. ¢ depends on

the surface used whereas h is a universal

constant. A graph of E, versus f gives a

straight line.

{a) How can ¢ be measured from the graph?

(b) How can h be measured?

{c) In a second experiment with a different
surface, a second straight line is obtained.
What do the two lines have in common?
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Vectors and scalars

Quantities in physics are either scalars (i.e. they just have magnitude) or vectors (i.e.
they have magnitude and direction). The tools for dealing with vectors are presented in

this chapter.

Objectives

By the end of this chapter you should be able to:

» describe the difference between vector and scalar quantities and give

examples of each;

* add ahd subtract vectors by a graphical technique, such as the parallelogram

rule;

= find the components of a vector along a given set of axes;
= reconstruct the magnitude and direction of a vector from its given

components;
= solve problems with vectors,

Vectors

Some quantities in physics, such as time,
distance, mass, speed, temperature, etc., just
need one number to specify them. These are
called scalar quantities. For example, it'is
sufficient to say that the mass of a body is 10 kg
or that the temperature today is 18°C. On the
other hand, many quantities are fully specified
only if, in addition to a number, a direction is
given. Examples are velocity, acceleration, force,
etc. These are called vector quantities. For
example, when describing the velocity of

an object, it is necessary to specify both the
magnitude of velocity (speed) and the direction
in which the object is moving. Table 4.1 lists
some examples of vectors and scalars.

A vector is represented by a straight line with
an arrow at one end, as shown in Figure 4.1a.
The direction of the arrow represents the
direction of the vector and the length of the
line represents the magnitude of the vector. To

Displacement Distance
Velocity  Speed
Acceleration Mass

Force Time

1Weig1'|r. Density

Electric field Electric potential
Magnetic field Energy
Gravitational field Gravitational potential
Torque Temperature
Area Volume
Momentum Electric charge
Angular velocity Work

Table 4.1 Examples of vectors and scalars.

say that two vectors are the same means that
both magnitude and direction are the same.
Two vectors with the same direction are not
necessarily along the same line. As long as they
are parallel to each other and have the same
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(a) (h) —_ &

Figure 4.1 (a) Representation of vectors by arrows.
{b) These three vectors are equal to each other.

magnitude, they are the same. Thus, the vectors
in Figure 4.1b are all equal to each other. This
ability to shift a vector around parallel to itself
(called parallel transport) is very important in
what follows.

Vectors are represented symbolically either with
an arrow on top of the symbol for the vector or
in bold type. Thus, both d and a represent a
vector, and its magnitude is denoted by if:l.

|a| or justa.

Twao vectors that have the same magnitude but
are opposite to each other in direction are the
negatives of one another (see Figure 4.2).

il

L 2

&

A 2
Figure 4.2 Two opposite vectors that are equal in
magnitude,

Multiplication of a vector
by a scalar

A vector can be multiplied by a scalar (ie. a
number) in a simple way. If the vector d is
multiplied by the number k, then the resulting
vector kd has the same direction asd ifk = 0
and opposite to d if k < 0. The magnitude of the
vector kd is simply k |a|. Thus, if the vector d
has a magnitude of 10 units, multiplying d by
the number —0.5 results in a vector of
magnitude 5 units in the opposite direction to
a. (See Figure 4.3.)

%
/—ﬂ.Sa_
/

Figure 4.3 Multiplication of vectors by a scalar.

Addition of vectors

Figure 4.4 shows vectors d and b. We want to
find the vector that equals d + b. Adding two or
more vectors together gives the vector sum,
which is the combined effect of the vectors
acting on a body. Thus, if two forces act on a
mass, their vector sum is the one force whose
effect on the mass is the same as the effects of
the two forces together. For this reason, the
sum of a number of vectors is called the net
vector or the resultant vector.

There are two equivalent graphical methods for
adding two vectors, The first is the
parallelogram method (see Figure 4.4):

1 Shift b parallel to itself so that its beginning
point coincides with the beginning point of d.

2 Complete the parallelogram whose two sides
ared and b.

3 Draw the diagonal of the parallelogram
which starts at the beginning of @ and b. This
diagonal is d@ + b.

The second method is the head-to-tail method

(see Figure 4.5):

1 Shift b parallel to itself so that its beginning
point touches the end point of d.

2 Join the beginning point of @ to the end
point of b. This is vector a + b.

You might ask if we would have obtained a
different answer if, instead, we had shifted d to

1N

Figure 4.4 Adding two vectors involves shifting
one of them parallel to itself so as to form a
parallelogram with the two vectors as the two
sides. The diagonal represents the sum,
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d a
Figure 4.5 One of the vectors is shifted parallel to
itself until its beginning point coincides with

the end of the other vector. The sum is then the |

arrow that joins the only beginning point to the
only end point.

the end of b and then joined the beginning of b
to the end of d. Check that you get the same
answer if you do this. This is a way of seeing
thatd +b=b+d.

Example questions

Q)1 ST e M AL L LI T ET TN T
Add together two vectors: the first has a
magnitude of 100 units and is directed east, the

other has a magnitude of 50 units directed at 45°
to the first.

Answer

See Figure 4.6. First we make a scale representing
10 units of the vector magnitude with 1 cm on
paper. Measuring the diagonal we find a length of
13.85 cm, implying a sum of 138.5 units. Using a
protractor we find that 8§ = 14.2°,

Figure 4.6 (Not to scale).

()2 A MRS ARSI SIS T RS TII T E
A velocity vector of magnitude 1.2ms™" is
horizontal. A second velocity vector of magnitude
2ms~" must be added to the first so that the sum
is vertical in direction. What is the direction of the
second vector and what is the magnitude of the
sum#

Answer

See Figure 4.7, Again we need a scale.
Representing 1 ms™' by 2 cm, we see that the
1.2ms"" correspondsto 2.4 cm and 2ms™' to

4 cm. First draw the horizontal vector; mark the
vertical direction and using a compass (or a ruler)
mark a distance of 4 cm from A, It intersects the
vertical line at B. AB must be one of the sides of
the parallelogram we are looking for. Thus,
measure a distance of 2.4 cm horizontally from B
to C and join O to C. This is the direction in
which the second velocity vector must be
pointing. Measuring the diagonal (i.e. the vector
representing the sum) we find 3.85 cm, which
represents 1.93ms™'. Using a protractor we find
that the 2ms~' velocity vector makes an angle of
about 25° with the vertical,

[ oS

Figure 4.7 (Not to scale).

()} H98sdRiIaaRIEt EIFETY TITEITTURI T atstssal
A person walks 5 km east, followed by 3 km north
and then another 4 km east. Where does he end up?

Answer

The walk consists of three steps and we may
represent each one by a vector (see Figure 4.8).
The first step is a vector of magnitude 5 km
directed east. The second is a vector of magnitude
3 km directed north and the last step is
represented by a vector of 4 km directed east. The
person will end up at a place that is given by the
vector sum of these three vectors, that is

OA + AB + BC, which equals the vector OC. By
measurement or by simple geometry, the distance
from O to C is 9.5 km and the angle 1o the

horizomtal is 18.4°,
I/C

Figure 4.8.
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Subtraction of vectors

We are given two vectors i and b. We want to
find @ — b. Since d — b is the same as @ + (—b),
all we have to do is find the vector —& and add
that to a (see Figure 4.9).

=i

Figure 4.9 Subtraction of vectors.

We have the important result that:

#ﬁéﬁiﬁhﬁéﬁpﬁﬂdﬁim ---------
This is very useful because in physics we are
often interested in finding the change in a
vector. For example, consider a body whose
velocity changes from ¥, to v,. The vector
representing the change in the velocity is the
vector AV = i/, — i/, which is the vector joining
the tip of ¥; to the tip of 'z (see Figure 4.10).

change in velocity

i

Figure 4.10 The vector represemmg the change in
velocity, ¥ — V7.

vec ;:ﬁmﬁﬁﬁ“ﬂl&f;_‘“.‘;ﬂﬁhﬁm =+

s eyl

Example question

(4 432438164 4TIt T ET PO TN I DY VN FINTENES
A body moves in a circle of radius 3 m with a
constant speed of 6.0 ms'. The velocity vector is
at all times tangent to the circle. The body starts
at A and proceeds to B and then C, Find the
change in the velocity vector between A and B
and between B and C. (See Figure 4.11.)

Answer

From A to B we have to find the difference
Vg — Va. The vectors are shown in Figure 4.12.

Figure 4.12.

The vector vy — v, 15 directed south-west and its
magnitude is (by the Pythagorean theorem)

Ji+i=Vere
=72
=B.49ms!

The vector ¥ — ¥ has the same magnitude as
vy — v, but is directed north-west.
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Components of a vector

Suppose that we use perpendicular axes x and y |
and draw vectors on this x—y plane. We take the
origin of the axes as the starting point of the [
vector, (Other vectors whose beginning points
are not at the origin can be shifted parallel to
themselves until they, too, begin at the origin.)
Given a vector d we define its components along
the axes as follows. From the tip of the vector
draw lines parallel to the axes and mark the
point on each axis where the lines intersect the
axes (Figure 4.13).

y-component

<]

X-component

Figure 4.13 The components of a vector.

The x and y components of d are called a, and
a,. They are given by

a, =acosd
a, =asing

# is the angle between the vector and the
positive x-axis. Some care must be taken in
identifying the correct angle that goes in
these formulae. The angle is properly
measured from the positive x-axis to the
vector, in the counter-clockwise direction

(see Figure 4.14).
Figure 4.14 The angle of a vector is measured from

the positive x-axis to the vector, in the counter-
clockwise direction. :

|
where a is the magnitude of the vector d and \
|

Example question

5 T ISR SIS RS s e STy
Find the components of the vectors in Figure 4.15.
The magnitude of 3 is 10 units and that of b is

20 units.

ad
Figure 4.15.

Answer
The relevant angle for a is 180° 4 45° = 225° and

that for bis 3307, Thus

a, = 10.0cos 225°
= —-7.07

a, = 10.0sin 225"
= —7.07

b, = 20.0cos 330°
=173

20.05sin 330°

= =100

=
(]

As we see, the components of a vector can be
negative as well as positive. It is somewhat less
precise, but in practice more convenient, not to
have to deal with negative components,
Consider the vector shown in Figure 4.16.

10N

<0

F
)

Figure 4.16 Any angle can be used to find the
magnitude of the components,

Its x component is clearly negative,

F, = 10cos 120° = —5 N. We could state,
however, that the x component of the vector is
5 N in the negative x direction. This is
equivalent to stating that F, = —5 N. It has the
advantage that by using trigonometry, we can
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find the numerical value of the component by
choosing the most convenient angle in the
problem (here the angle of 60°). We do not have
to deal with the awlkward "the counter-
clockwise angle from the positive x-axis’ (here
the angle of 120°). In any case treating the
components as positive or negative is a question
of convenience and up to you, provided you are
clear about what are you are doing.

Example question

Oy BT I T I R T LRI I R T R R
Find the components of the vector W along the
axes shown in Figure 4.17.

W l

Figure 4.17.

Answer

See Figure 4.18. Notice that the angle between
the vector W and the y-axis is 6.

-axis
’ ¥

Figure 4.18.
Then by simple trigonometry

W, = Wsin & (W, is opposite the angle 8 so the
sine is used)

W, = Wecos 0 (W, is adjacent to the angle & so
the cosine is used)

An additional notation for vectors is to give the
x and y components as an ordered pair so that,
for example, @ = (2, 1) denotes a vector with x
component equal to 2 and y component equal to 1.

Reconstructing the vector from

its components

Knowing the components of a vector allows us
to reconstruct it (i.e. to find the magnitude and
direction of the vector). Suppose that we are
given that the x and y components of a vector
are F, and .'_} We need to find the magnitude of
the vector F and the angle (#) it makes with the
x-axis (see Figure 4.19). The magnitude is found
by using the Pythagorean theorem and the
angle by using the definition of tangent.

F
F=yR2+R2 F

fl = arctan =

=
b, P,

L 3

Figure 4.19 Given the components of a vector we
can find its magnitude and direction.

As an example, consider the vector whose
components are f, = 4.0 and F, = 3.0. Then the
magnitude is simply

F=JR2+F2=V8+32=4/25=50

and the direction is found from

! = arctan 4, = arctan 3 - 36.87° == 37°
F, 4
Here is another example. We need to find the
magnitude and direction of the vector with
components F, = —-2.0 and F, = —4.0. From
Figure 4.20, it follows that the vector lies in the
third quadrant,

The magnitude is

F=JR2+R2=V(=22+ (-2

=20 =447 ~45
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Fy

Figure 4.20 The vector is in the third quadrant. We
expect the angle it makes with the positive x-
axis to be between 180 and 270 degrees.

The direction is found from

f = arctan E = arctan :—; = arctan2
The calculator gives @ = tan™' 2 = 63°. Here we
must be cdreful. Our vector is in the third
quadrant, so the angle it makes with the positive
x-axis must be between 180° and 270°. We now
realize that there is another angle whose tangent
is 2. It is the angle 180" + 63° = 243" and this is
what we want. Thus, in finding the direction,
first make a diagram to see what quadrant your
vector lies in so that you know what angles to
expect. Never blindly take what the calculator
gives. Of course if you denote the angle as
in Figure 4.20, you still give a complete
description of the vector and that is fine.

As a final example consider the vector with

Fr =5.0and F, = —4.0. It lies in the fourth
quadrant. Its magnitude is

F =5 4+ (-4 = 6.4 and its direction is

# = arctan=! = —39°. The calculator gives the
angle from the x-axis to the vector in the
clockwise direction. We are expecting an angle
between 270 and 360 degrees. The angle 1s
3600 — 39° = 321°.

Adding vectors by components

Adding vectors whose components are given is
straightforward. If @ = (a., a,) and b = (b, b,),
then ¢ = d + b implies that ¢ has components

Cr =0y +by, ¢y =ay+Dby

For example, if d = (1, 1) and b = (-3, 2) then
d+b=(-31+2)=(-23); that is, the x
component of the sum is the sum of the x

components of the individual vectors and so on.
Similarly ifd =d — b, then

d_,: = — bx — "-L d}_. =ﬂ_,|. b_l,' — —-]
. Example questions

()7 BRI TV T T PRI TE SRS
| a=(1,1), b=(1, =1). Find the magnitude of 3

and b and the magnitude of 3 + b.

Answer
a=, 2
b= ./2
i+h=(,0

s0 the magnitude is 2.

O EErEEEETIENE T H S S L ST T I TR T
a=(1,3),b=(2, —2). Find the vector & such that
itbh+e=0.

Answer

¢=—(3+Dh
==(3,1)
= (-3, -1

If the components are not given, then we have
to find them.

Figure 4.21 shows two vectors F  and F'_a_- of
magnitude 10 and 14, respectively. Vector [
makes an angle of 60° with the x-axis and
vector I » an angle of 30°. We want to find the
magnitude and direction of the vector Fi+F. 2.

¥

Figure 4.21 Finding the sum of two vectors using
| components. (Not to scale.)

The components of the vectors are

Fi. = F, cos 6l
=90
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F|_-|,r = F'| sin 60
= B.660

F}_,, = Fz cos 30°
= 12.124

Fay = Fa8in30°
- ?nﬂ

Hence the components of the vector F = F;, + F>
4are

-rr = F!x + —FZJ
= 17.124
Fy=Fiy +Fy
= 15.660

The vector F = F, + F, thus has magnitude

F=JR2+R2

= /17.1242 + 15.6602
=232=23

The direction of F = F, + F; is given by

lang = F—‘
B 15.660
17124
= [.9145
s0 that
f = arctan 0.9145
= 42 4° = 42°
Example question

QY e S S ST I IT I S SS e Ra s e seeTTY
Find the sum of the vectors shown in Figure 4.22.
F, has magnitude 8.0 units and F, magnitude 12
units. Their directions are as indicated.

42°

Figure 4.22 (Mot to scale).

Answer
Fix=—F,cos42”
= —5.945
Fiy = Fysin42°
= 5.353
Fi, = F,cos 28
= 10.595
F;, = F;5in 28°
= 5.634
The sum F = F, + F, then has components
F,=Fi.+ F3
= 4,650
Ey= Fi,+ Fyy
= 10.987
Thus, the magnitude of the sum is

F = \/4.650% + 10.9872

=11.9=212
and its direction is
fl = arctan 10967
a 4.65
= h(7.1° =67

Questions

1 A body is acted upon by the two forces shown
in Figure 4.23. In each case draw the one
force whose effect on the body is the same as
the two together.

L L

Figure 4.23 For question 1.

2 Vector A has a magnitude of 12.0 units and
makes an angle of 30° with the positive
x-axis. Vector B has a magnitude of 8.00 units
and makes an angle of 80° with the positive
x-axis. Using a graphical method, find the
magnitude and direction of the vectors

(a) A+ B
(b) A— B
c) A—28.
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3 Repeat the previous problem, this time using
components.

4 A person walks 5.0 km due east, then 3.0 km
due north and finally stops after walking an
additional 2.0 km due north-east. How far and
in what direction relative to her starting point
is she!

5 Find the magnitude and direction of the
vectors with components:

(a) A,=—-4.0cm, A,=-4.0cm

(b) A, =124km, A, =-158km

) Ac=0, A,=-50m

(d) A,.=80N, A, =0.

6 The components of vectors Aand B are as
follows: (A, = 2.00, A, = 3.00),

(B, = —2.00, B, = 5.00). Find the magnitude
and direction of the vectors:

(a) A;

7 Vectors A and B have components

(A = 3.00, A, = 4.00),

(B, = —1.00, B, = 5.00). Find the magnitude
and direction of the vector € such that

A-B + C=0.

8 The displacement vector of a moving object
has components (r, = 2, r, = 2) initially. After
a certain time the displacement vector has
components (r, = 4, r, = 8). What vector
represents the change in the displacement
vector?

9 Figure 4.24 shows the velocity vector of a
particle moving in a circle with speed 10 ms™'
at two separate points. The velocity vector

is tangential to the circle. Find the vector
representing the change in the velocity vector.

final imitial

Figure 4.24 For question 9.

10

11

12

13

In a certain collision, the momentum vector of
a particle changes direction but not
magnitude. Let p be the momentum vector of
a particle suffering an elastic collision and
changing direction by 30°. Find, in terms of

p (=] pl), the magnitude of the vector
representing the change in the momentum
vector.

Points P and Q have coordinates P = (x, »),

Q= (x, y).

{a) Find the components of the vector from P
to Q.

{(b) What are the components of the vector
from Q) to P?

(c) What is the magnitude of the vector from
the origin to P?

The velocity vector of an object moving on a
circular path has a direction that is tangent

to the path (see Figure 4.25). If the speed
{magnitude of velocity) is constant at

4.0 ms~' find the change in the velocity
vector as the object moves (a) from A to B and
(b) from B to C. (c) What is the change in the
velocity vector from A to C? How is this
related to your answers to (a) and (b)?

~——

Figure 4.25 For question 12.

A molecule with a velocity of 352 m s~

collides with a wall as shown in Figure 4.26

and bounces back with the same speed.

{a) What is the change in the molecule’s
velocityt

{b) What is the change in the speed?

D——b

Figure 4.26 For question 9.
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14 Find the components of the vectors shown
along the axes indicated by a + in
Figure 4.27. Take the magnitude of each
vector to be 10.0 units.

(b)

(d)

Figure 4.27 For question 14.

15

16

Vector A has a magnitude of 6.00 units and is
directed at 60° to the positive x-axis. Vector B
has a magnitude of 6.00 units and is directed
al 120 to the positive x-axis. Find the
magnitude and direction of vector C such that
A+ B+ C = 0. Place the three vectors so that
one begins where the previous ends. What do
you observe?

Plot the following pairs of vectors on a set of
x- and y-axes. The angles given are measured
counter-clockwise from the positive x-axis.
Then, using the algebraic component methaod,
find their sum in magnitude and direction:

(a) 12.0 N at 20° and 14.0 N at 50°

(b) 15.0 N at 15" and 18.0 N at 105°

(c) 20.0 N at 40° and 15.0 N at 3107 (i.e. —507).



Graphical analysis and
uncertainties

This chapter introduces the basic methods of dealing with logarithmic and exponential

functions in physics. It also introduces the basic methods for calculating the uncertainty

in a quantity, which is a function of other measured quantities. The uncertainty in

measured quantities will produce an uncertainty in a number obtained using the
l measured quantities.

| l]I1jar:fivas

By the end of this chapter you should be able to:

+ deal with logarithmic functions, semi-logarithmic and logarithmic plots;

« find the error in a calculated quantity in terms of the errors of the
dependent quantities;

» find the error in the slope and intercept of a straightline graph.

Logarithmic functions Time, fmin  Activity/Bq_

semi-logarithmic plots i . : =

The exponential function y = e* plays a . : =

significant role in many areas of physics. The | 2 £3

activity (number of decays per unit time)asa | 3 57

function of time for a radioactive element ' 4 44

behaves as A = Age™, where A is known as 5 a5

the decay constant. The current through a G 7 27

diode varies with applied voltage as 7 21

I =I,e*"/", where T is the temperature in : 5 %

kelvin and k is a constant. When the j 5 =

exponential is negative, we speak of a decay !

problem, whereas positive exponentials { i 2

represent growth problems. Table 5.1 Experimental data.

Let us concentrate on the radioactive decay The graph of activity versus time is an
problem. Consider the data in Table 5.1, which exponential decay curve as expected. This is

was collected in an experiment. | shown in Figure 5.1.
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activity/Bg

e T“"—"F“*
10
Figure 5.1 The exponential decay curve,

The halflife can be determined from this graph
by finding the time at which the activity is

60 decays per minute (i.e. half its original
value). From the graph, this is found to be
about 2.8 minutes. It is more convenient,
however, to plot a different graph so that a
straight line is obtained.

Such a graph can be made by using a calculator
to compute the natural logarithm of each
activity value and plotting the logarithm
against time, as in Figure 5.2.

Finding the slope of this straight line as usual,
we obtain:

slope = —% ~ —0.25min”"'

Thus, the decay constant is 0.25 min . Using
the known relationship between the decay

LRI
bt 1T 111 = L .|

Figure 5.2 The exponential decay curve becomes
linear if we plot the logarithm of activity versus
time.

constant and the halflife
JLT”Z = In 2
it follows that the halflife is
In2
=g
. 0.693
025
= 2.8 min

The vertical intercept is about 4.8 and equals
In Ay. Hence, the initial activity is found
to be

48=InA,

= Ap= E"H

~ 120Bq

Logarithmic plots
Consider now a variable that depends on
another through a power.

If y = kx", then Iny = Ink + nInx, which means
that a graph of Iny versus Inx gives a straight
line with slope n and vertical intercept equal to
In k.

Thus, consider the following data for the
maximum current [ that can flow in a wire of
diameter D (see Table 5.2 and Figure 5.3).

This is a curve of unknown equation.
Suspecting a power relationship between the
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1]

22
35
46

5.97
647
731
8.1

B.86
9.59
10 10.29

bl el ;| ] W=D

Table 5.2 The maximum current
that can flow in a particular wire.

diameter/mm
r

o i
10 C R

Jy ennsens] ISpmyeiey T
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Figure 5.3 A plot of diameter versus current gives
a curve of unknown equation.

diameter D and the current I, we take natural
logarithms of both variables and plot In D
versus In I (Figure 5.4). (Note that the zero on
the vertical axis has been suppressed.)

We find the slope in the usual way:

2-1
Slﬂpﬂ = Tﬁi =0.67

Thus, D = kI’*?, The constant k can also be
determined by finding the intercept of the line
with the vertical axis. The intercept is 0.8 and
solnk =0.80 = k =" = 2.2 Finally,

D = 2.21% where the current is in amps and
the diameter in mm.

TR, 1o
B

AEEREEE] ™7 TIT T T
=‘ | :."'
[y i | 1

Figure 5.4 A plot of In D versus In I gives a straight
line.

Propagation of errors

Suppose that in an experiment quantities
a,b,c, etc., are measured, each with an error
Aa, Ab, Ac, etc. That is a = ag £ Aa,

b = by + Ab, ¢ = o + Ac, etc,, where the
subscript zero indicates the mean value of the
quantity. Thus, if a mass is measured to be

4.5 kg 0.1 kg, mp = 4.5 kg, and Am = 0.1 kg.

-----------------

> IFa =g+ Ad, the quantity Aa js clled

]

TRy Or ST M L P

Thus, in the measurement of mass, the absolute
error is 0.1 kg and the fractional or relative
error is 0.1/4.5 = 0.02 or 2%.

If we wish to calculate a quantity @ in terms of
a,b.c, etc., an error in ( will arise as a result
of the individual errors in a, b and ¢. That is,
the errors ina, b and ¢ propagate to (2. How do
we find the error in Q given the errors in
a,b,c, etc?

There are two cases to consider and we will give
the results without proof.

Addition and subtraction
The first case involves the operations of
addition and/or subtraction. For example, we
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might have Q =a+borQ =a—-bor

(] =a+b —c.Then, in all cases the absolute
uncertainty in @Q is the sum of the absolute
uncertainties ina, b and .

(d=a+bhb = AQ=Aa+ Ab
Q=a-hb = AQ=Aa+ Ab
O=a+b—-c = AQ=24Aa+ Ab+4 Ac

Example question

0] EETEIITTRALLL st Py ST ST VT R i OISR IR TS
The side a of a square is measured to be 12.4 cm
+ 0.1 cm. Find the error in a calculation of the
perimeter 5 of the square.

Answer
Here we have addition and so the error in 5 is

AS= Aa+ Aa+ Aa+ Aa
= 4Aa
= 0.4 cm

Thus
S=496cm=04cm

Considerable errors result if the small
difference of two large numbers is taken. If
Q=a-b,anda =538.7 + 0.4 and

b =537.34+0.4, then Q = 1.4 +0.8. The
fractional error in this case is 0.57 or 57%. The
error in the quantities 2 and b is small
compared with the mean values of 2 and b but
huge compared with the difference.

Multiplication, division, powers

and roots

Suppose now that the quantity to be calculated
involves a multiplication such as in @ =ab, a
divisionasinQ = forQ = ‘:—“ Or a power

(1 =a", or a root Q = %/a. In all these cases the
fractional uncertainty in Q is the sum of the
fractional uncertainties of a, b and c.

AQ  Aa Ab

=ab T !

=4 = Qq ay by

_ﬂl fln_ﬂu hu.
b i
{1-_—_a— = ﬂ=ﬂ+ﬁ_h+£
L Qn fy .hg Cp

AQ Aa
{1 =ﬂ” p—1 —_— —
Qo | Iﬂn
Q=7 » 2@ _1as
Qo nap
Example questions

QI I T S e T TR s T s e FRE R TN
The sides of a rectangle are measured to be
a=25cm+01cmand b=5.0 cm = 0.1 cm.
Find the area A of the rectangle.

Answer
The fractional uncertainty in a is
Aa 0.1

a 25
= .04
or 4%

That in bis

Thus, the fractional uncertainty in the area is

0.04 + 0.02 = 0.06 or 6%

Since
Ag=25x5.0
= 12.5 cm?
and
AA
— = 0.06
Aa
= AA=006 %125
= 0.75 cm?
Hence

A=125em*+0.8cm’

()3 oS TR TSR T YT ES
A mass is measured to be m= 4.4 £ 0.2 kg and its
speed 18 £ 2m s7'. Find the kinetic energy of the
mass.

Answer

The kinetic energy is £, = 1mv’ i.e. Fi, =713 |)
and from

AE, Am Av
i R el
Eijl my Vo
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it follows that A E, = 191 J; that is
E.=713£191 ) orjust £, =700+ 200 ).

(4 BT R I T R S T T
The length of a simple pendulum is increased by
4%. What is the fractional increase in the
pendulum's period?

Answer
The period is related to the length through
= 'l:r‘E. Thus lI:- = L 2L and since £+ = 4%

11

we have "'TU’ = 1 % 4% = 2%.

Q5 EErEt e TR T S FIIIIT e F S S A FTFEE S
A body radiates according to the black-body law
P = cT*, where T is the temperature and c is a
constant. If the temperature of the body is
increased by 3%, how does the radiated power
change?

Answer
AP AT
S T =4 3% = 12%.
P T
Other functions

Suppose, finally, that the calculated quantity Q
depends on a variable a through a sine,

( = sina. If a is measured to be 58" = 2° what
is the error in (Q? Using calculus (and being
very careful to change from degrees to radians
before we differentiate) we can show that,
approximately,

A = cosa Aa
b3
=c0s08" % 2" X ——

180
= 0.0185
= (.02
It is easier in practice, however, to find the
largest and smallest values of () through
Qmax = siN(58° + 2°)
= 0.8660
Qin = sin(58° — 2°)
= (0.8290
so we can deduce that the error is half of the
difference

AQ = %{G.Bﬁﬁﬂ - 0.8290)

= 0.0175
= 0.02

The mean value of Q is
O ean = SiN38°

= (.8480
= (.85
and so
Q =0.285=+0.02

This method can be applied to any other
functional form relating (1 to a.

Uncertainties in the slope and intercept
Having decided the line of best fit for a given
set of data that are expected to fall on a straight
line, it is usually necessary to calculate the
slope and intercept of that straight line.
However, since the data points are the result of
measurements in an experiment, they are
subject to experimental uncertainties. Thus, let
us return to the example of Chapter 1.2. In an
experiment to verify Hooke's law, data for the
tension and extension of a spring are collected
and plotted as shown in Figure 5.5. The
experimenter has included vertical uncertainty
bars representing an uncertainty of £10 N in
the values of the tension in Figure 5.5 (the
length of the vertical bar is thus 20 N).

120

100 T e e T e

b

N e R e

40 P

2(]._”

|
|
|

(8 A B SN RN EEERE FEONA RR A TARas _._.‘,-,.--;;'—_
‘ A 1 .. I =
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Figure 5.5 Data points plotted together with
uncertainties in the values for the tension.

The experimenter then draws the line of best fit
through the data points and obtains a straight
line, as shown in Figure 5.6. The slope of this
line is 200 N m ' and this represents the spring
constant. What is the uncertainty in the slope
and intercept?
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Figure 5.6 The line of best fit through the data
points.

A simple way to estimate these uncertainties is
by drawing two extreme straight lines as in
Figure 5.7 and finding the slope of each. Both
straight lines are made to pass through a point
that is halfway in the range of the x values: in
this case the point with x = 0.3 m. The first line
is then drawn so as to have the largest slope and
still fit the data (this means it will pass at the
extremes of the vertical error bars). The second
line is made to have the least slope and still fit
the data. The two slopes are then measured.

N

e B | NN FA NAE N RN INE N INEN I8 Nn|
O AT k1012 11013 1 004 L 0T 04
Figure 5.7 The uncertainty in the slope can be

estimated by drawing two extreme additional
graphs through the centre point.

Measurement of the two slopes gives 235 N m !

and 177 N m™'; that is, errors of +35 N m ! and
—23 N m ', Taking the average of these two
errors gives 29 N m ', so we may state that the
spring constant is 200+ 30 N m . The same
procedure allows an estimate of the vertical
intercept. The line of best fit gives an intercept

of zero. The line with the largest slope has an
intercept of —11 N and the line of least slope
has an intercept of 45 N. The average of the
absolute values of these errorsis (11 4+5)/2 =8
and so the intercept is calculated to be 0+ 8 N.

Questions

1 Acircle and a square have the same
perimeter. Which shape has the largest area?

2 A sphere and a cube have the same surface
area. Which shape has the largest volume?

3 What is the approximate value of 1 — cos x
when x is small?

4 The natural logarithm of the voltage across a
capacitor of capacitance C = 5ufF as a
function of time is shown in Figure 5.8. The
voltage is given by the equation V = Ve V%,
where R is the resistance of the circuit. Find
{a) the initial voltage;

{b) the time for the voltage to be reduced to
half its initial value;
(c} the resistance of the circuit.

InV
F Y
35 '
E T
REE=EimEass
2.5 ; e b
9 = L e s s
0 5 10 15 0
Figure 5.8 For question 4.

5 Figure 5.9 shows how the velocity of a steel
ball depends on time as it falls through a
viscous medium. Find the equation that gives
the velocity as a function of time.,

6 Table 5.3 shows the mass M of several stars
and their corresponding luminosity L (power
emitted). By plotting the luminosity versus the
mass on logarithmic paper, find the
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0 2 4 ] 8 10 12 14
Figure 5.9 For question 5.

relationship between these quantities,
assuming a power law of the kind L = kM",
giving the numerical value of the parameter .

1 1
42

238

12 4700
20 26500

Table 5.3 For question 6.

7 Table 5.4 shows the data collected in an
experiment.
Assuming the suspected relationship between
the variables is y = cx**, plot the data in
order to get a straight line and then find the
value of the constant ¢

1.0 20 3.0 4.0 3.0 6.0

¥ 20 13 312 B0 111.8 176.4

Table 5.4 For question 7,

8 The variable y depends on x through y = ke®.
How should these two variables be plotted in
order to get a straight-line graph?

9  Two forces are measured to be 120 £ 5 M and
60 + 3 N. Find the sum and difference of the
two forces, giving the uncertainty in each case.

10 The quantity ) depends on the measured

values a and b in the following ways:

(Q Q=a/b,a=20+1,b=1041;

bl Q=2a+3ba=20x2,b=154%3;
(c) Q=a—-2b,a=50+1,b=24+0.5;
d) Q=a%a=10.040.3;

(&) Q=a*/¥,a=100x5,b=20%2.
In each case find the value of @ and its
uncertainty.

11 The centripetal force is given by F = =2 _ If
the mass is measured to be 2.8 + 0.1 kg, the
velocity 14 + 2 m s~' and the radius
8.0 £ 0.2 m, find the force on the mass,
including the uncertainty.

12 The mass of a rectangular block is measured
to be 2.2 kg with an uncertainty of 0.2 kg. The
sides are measured as 60 + 3 mm, 50 + 1 mm
and 40 £ 2 mm. Find the density of the cube
in kilograms per cubic metre, giving the
uncertainty in the result,

13 The radius r of a circle is measured to be
24 cm+ 0.1 cm.

{a) What is the error in the area of the circle?
b} What is the error in the circumference?

14 The radius r of a sphere is measured to be
22.7 cm £+ 0.2 cm.

{a) What is the error in the surface area of the
sphere?
{(b) What is the error in the volume?

15 The sides of a rectangle are measured as
4.4+ 0.2 cm and 8.5 £ 0.3 cm. Find the area
and perimeter of the rectangle.

16 The period of a simple pendulum depends on
length through T = 2/~ If the length is
increased by a factor of 2, by what factor does
the period change?

17 In the previous question, if the length of the
pendulum is increased by 2%, what is the
fractional increase in the period?

18 If the length of a pendulum is measured with
a fractional uncertainty of 0.5% and the
period with a fractional uncertainty of 0.6%,
what is the fractional uncertainty in the
measured value of the acceleration due to
gravity?



Kinematic concepts

Maotion is a fundamental part of physics and this chapter introduces the basic quantities
used in the description of motion. Even the simplest of motions, such as a leaf falling
from a tree, can be a fairly complicated thing to analyse. To leam how to do that requires
that we sharpen our definitions of everyday concepts such as speed, distance and time.
As we will see, once we master motion in a straight line, more complicated types of
motion such as circular and parabolic motion will follow easily.

 Objectives

By the end of this chapter you should be able to:

* describe the difference between distance and displacement;
» state the definitions of velocity, average velocity, speed and average speed,
+ solve problems of motion in a straight line with constant velocity, x = xg + vI;
» appreciate that different observers belonging to different frames of
| reference can give differing but equally valid descriptions of motion;

+ use graphs in describing motion;

« understand that the slope of a displacement-time graph is the velocity
and that the area under a velocity-time graph is the change in

. displacement.

Displacement and velocity

Consider the motion of a point particle that is
constrained to move in a straight line, such as
the one in Figure 1.1. Our first task is to choose
a point on this line from which to measure
distances. This point can be chosen arbitrarily
and we denote it by O.

When we say that the distance of a point P from
O is 3 m, we mean that the point in question
could be 3 m to the left or right of 0. To.
distinguish the two points we introduce the

1y (8] P
1 L )

I | I
Figure 1.1 To measure distance we need an origin
to measure distances from.

concept of displacement. The displacement of a
point from O will be a quantity whose
numerical value will be the distance and its
sign will tell us if the point is to the right or
left of O. Thus a displacement of —4 m means
the point is at a distance of 4 m to the left of O,
whereas a displacement of 5 m means a
distance of 5 m to the right of O. Displacement
is a vector; for the case of motion in a straight
line, the displacement vector is very simple. It
can be determined just by giving its magnitude
and its sign. We will use the convention that
positive displacements correspond to the right
of O, negative to the left. (This is entirely
arbitrary and we may choose any side of the
origin as the positive displacement; this takes
care of cases where it is not obvious what



21 Kinematic concepts 39

‘right’ means.) We will use the symbol x for
displacement in a straight line (we reserve the
symbol r for displacements in more than one
dimension) and s for distance (from the Latin
spatium). Displacement, being a vector, is
represented graphically by an arrow that
begins at O and ends at the point of interest.
(See Figure 1.2.)

|B s=4m 0
L] | |

x==dm .1'=+5r:
Figure 1.2 Displacement can be positive (point A)
or negative (point B).

£=3m ‘?‘

We will use the capital letter 5 to stand for the
total distance travelled, and Ax for the change

in displacement. The change in displacement is
defined by

Ax = final displacement — initial displacement

If the motion consists of many parts, then the
change in displacement is the sum of the
displacements in each part of the motion. Thus,
if an object starts at the origin, say, and
changes its displacement first by 12 m, then by
—4 m and then by 3 m, the change in
displacement is 12 — 4 + 5 = 11 m. The final
displacement is thus 11+ 0= T1m.

Example questions

Q1 (s IR i A0 1 I T I T R TEE
A mass initially at O moves 10 m to the right and
then 2 m to the leit. What is the final
displacement of the mass?

Answer
Ax=+4+10m — 2 m = 8 m. Hence the final
displacementisOm + 8 m= 8 m.

()} SRR I Y R SN Y VRN IR T
A mass initially at O, first moves 5 m to the right
and then 12 m to the left. What is the total
distance covered by the mass and what is its
change in displacement?

Answer

The total distance is 5m + 12m = 17 m. The
change in displacement is +5m — 12m =

—7 m. The mass now finds itself at a distance of
7 m to the left of the starting point.

QF Eorieacates ettt it 00N AR 120 SEI44E
An object has a displacement of =5 m. It moves

a distance to the right equal to 15 m and then

a distance of 10 m to the left. What is the total
distance travelled and final displacement of the
object? What is the change in displacement of
the object?

Answer

The distance travelled is 15 m + 10 m = 25 m.
The abject now finds itself at a distance of 0 m
from O and thus its displacement is zero. The
original displacement was x = —5 m and thus
the change in displacement is Ax=0m
=(=5m}=+5m.

Speed

If an object covers a total distance 5 in a total
time T, the average speed of the object is
defined by

e
Suppose that you drive your car for a given
amount of time, say 50 minutes. The odometer
of the car shows that in those 50 minutes a
distance of 30 km was covered. The average
speed for this motion is

i 30km B k_m

50 min min
1000 m i

=0.60 s = 10m

Using the concept of the average speed is only
a crude way of describing motion. In the
example above, the car could, at various times,
have gone faster or slower than the average
speed of 10 m ™', Cars are equipped with an
instrument called a speedometer, which shows
the speed of the car at a particular instant in
time. We call the speedometer reading the
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instantaneous speed or just speed. Speed is
defined by measuring the distance the car
{or whatever it is that is moving) covers in a
very short interval of time (see Figure 1.3). If
this distance is 45 and the time interval §f then
the instantaneous speed is

V= 3_5

at

540
*

| 1 |
ol J |
n
Figure 1.3 Speed at a given time {is defined in
terms of the small distance &s travelled in a
small interval of time &1 right after{.

Note that, by definition, speed is always a
positive number.

A word on notation
If Q is any physical quantity, we will use AQ to
denote the change in Q:

AQ = Qfnal — Qinitial

The symbol A will thus represent a [inite change
in a quantity. The symbol §Q represents an
infinitesimal change in Q. Thus, §Q plays .
roughly the same role as the calculus quantity
dQ. So the definition of instantaneous speed %
is to be understood as the calculus quantity 5
that is, the derivative of distance with respect
to time. Equivalently, we may understand it as
45 . As

it Af=0 Al
If a quantity Q depends on, say, time in a linear
way, then the graph showing the variation of (
with t will be a straight line. In that case (and
only in that case)

5Q _ aQ
st Al

and each of these quantities represent the
(constant) gradient of the graph.

In order to avoid a proliferation of deltas, we
will mostly use the capital delta; when
infinitesimal quantities are involved, we will
simply state it explicitly.

Example question

(34 15253 RIS I EIEII T ETTSSTISTTTY S sS4 s 448
A car of length 4.2 m travelling in a straight line
takes 0.56 s to go past a mark on the road. What
is the speed of the car?

Answer

From v = 22, we find v=7.5 m s™". This is taken

as the speed of the car the instant the middle
point of the car goes past the mark on the road.

Velocity

Average speed and instantaneous speed are
positive quantities that do not take into
account the direction in which the object
moves. To do that we introduce the concept of
velocity. The average velocity for a motion is
defined as the change in displacement of the
object divided by the total time taken. (Recall
that the change in displacement, Ax, means
final minus initial displacement.)

_ Ax
VP=—
Al

Similarly, the instantaneous velocity at some
time f, or just velocity, is defined by the ratio of
the change in displacement, dx, divided by the
time taken, 4t.

. 8x
Tt
{See Figure 1.4.)
o x+8x

L

1 =
"

X
Figure 1.4 The definition of velocity at time {
involves the small displacement change éx in
the small time interval &t right after [.
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We are using the same symbol for speed and
velocity. It will always be clear which of the two
we are talking about.

Unlike speed, which is always a positive
number, velocity can be positive or negative.
Positive velocity means the object is increasing
its displacement — that is, it moves toward the
‘right’ by our convention. Negative velocity
signifies motion in which the displacement is
decreasing — that is, toward the ‘left’. Thus, it is
important to realize that the quantity éx can be
positive or negative. (It is worthwhile to note
that the magnitude of velocity is speed but the
magnitude of average velocity is not related to
average speed.)

Example questions

Q5 MIEseeaSIrETHR NS ISITFIIINITILI EASIT IR
A car starts out from O in a straight line and
moves a distance of 20 km towards the right, and
then returns to its starting position 1 h later. What
is the average speed and the average velocity for
this trip?

Answer

The total distance covered is 40 km. Thus, the
average speed is 40 km h™'. The change in
displacement for this trip is 0 m because

displacement = final — initial
=0m-0m
=0m

So the average velocity is zero.

()b TR I T T ISR T H
A car moves in exactly the same way as in
example question 1, but this time it starts out not
at O but a point 100 km to the right of O. What is
the average speed and the average velacity for
this trip?

Answer

The distance travelled is still 40 km and hence the
average speed is the same, 40 km h™', The
change in displacement is given by

displacement = final — initial
=100 km — 100 km
= 0 km

Hence the average velocity is zero as before. This
example shows that the starting point is irrelevant.
We have the freedom to choose the origin so that
it is always at the point where the motion starts.

(37 SEITITITIeT S HTENI TP r S ST TP ]
A car 4.0 m long is moving to the left. It is
observed that it takes 0.10 s for the car to pass a
given point on the road. What is the speed and
velocity of the car at this instant of time?

Answer

We can safely take 0.10 s as a small enough
interval of time. We are told that in this interval
of time the distance travelled is 4.0 m and so
the speed is 40 m s~'. The velocity is simply
—40 m s~ ', since the car is moving to the left.

Motion with uniform velocity (or just uniform
motion) means motion in which the velocity is
constant. This implies that the displacement
changes by equal amounts in equal intervals of
time (no matter how small or large). Let us take
the interval of time from { = 0 to time [.

The initial displacement of a body moving with
a constant velacity 5 m s™' is =10 m. When
does the body reach the point with
displacement 10 m? What distance does the
body cover in this time?
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Answer

From

X= Xxag+ vl

= 10 =-10+ 5¢
= =45

So the distance travelled is 20 m,

()Y FErTTssssssEseans s s TS T IASF STEITONE
Bicyclist A starts with initial displacement zero
and moves with velocity 3 m s™'. At the same
time, bicyclist B starts from a point with
displacement 200 m and moves with velocity
—2ms . When does A meet B and where are
they when this happens?

Answer

The formula giving the displacement of A is
Xn = {] + Jf

and that for B is
xp =200+ (-2N
= 200 — 2!

When they meet they have the same
displacement, so

Xa = Xg
= 3t =200 =2t

= 51 =200
=t =405

Their common displacement is then 120 m.

Q) TR I TRt
Object A starts from the origin with velocity

3 m s~ and object B starts from the same place
with velocity 5 m s™', 6 seconds later, When will
B catch up with A?

Answer

We take object A to start its motion when the clock
shows zero. The displacement of A is then given by

Xy = ET]
and that of B by
Xg = 5“ - ﬁ:l

The formula for B is understood as follows. When
the clock shows that t seconds have gone by,
object B has only been moving for (t — 6)

seconds. When B catches up with A, they will
have the same displacement and so

It=5(I—6)
= 2= 30
= [=15s%

The displacement then is 45 m.

Frames of reference

We are used to measuring velocities with
respect to observers who are "at rest’. Thus,
velocities of cars, aeroplanes, clouds and falling
leaves are all measured by observers who are at
rest on the surface of the earth. However, other
observers are also entitled to observe and record
a given motion and they may reach different
results from the observer fixed on the surface of
the earth. These other observers, who may
themselves be moving with respect to the fixed
observer on earth, are just as entitled to claim
that they are ‘at rest’. There is in fact no
absolute meaning to the statement ‘being at
rest’ — a fact that is the starting point of
Einstein's theory of special relativity. No
experiment can be performed the result of
which will be to let observers know that they
are moving with constant velocity and that they
are not at rest. Consider two observers: observer
A is fixed on the earth; observer B moves past A
in a box without windows. B cannot, by
performing experiments within his box (he
cannot look outside) determine that he is
moving, let alone determine his velocity with
respect to A,

An observer who uses measuring tapes and
stopwatches to observe and record motion is
called a frame of reference. Consider the following
three frames of reference: the first consists of
observer A on the ground; the second consists of
observer B, who is a passenger in a train sitting
in her seat; the third consists of observer C, a
passenger on the train who walks in the
direction of the motion of the trainat 2 m s,
as measured by the passenger sitting in her seat.
The train moves in a straight line with constant
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velocity of 10 m s~ as measured by the observer

on the ground. The three observers describe
their situation as follows: A says he is at rest,
that B moves forward at 10 m s ' and that C
moves forward at 12 m s™'. This is because in 1 s
the train moves forward a distance of 10 m but,
in this same second, C has walked an additional
distance of 2 m making him 12 m away from A.
Thus A measures a velocity of 12m s for C.
Observer B says that she is at rest. As far as B is
concerned, A is moving backwards (the station is
being left behind) with a velocity of —10 m s,
and C is moving forward at a velocity of 2ms .
Observer C claims he is at rest. As far as he is
concerned, A is moving backwards at =12 m s~

and Bat —2ms™ .

1

Example question

I e e LT
A cart moves in a straight line with constant
speed. A toy cannon on the cart is pointed
vertically up and fires a ball. Ignoring air
resistance, where will the ball land?

Answer

The ball will land back into the cannon. For an
observer moving along with the cannon, this is
obvious. This observer considers herself to be at
rest; so the ball will move vertically up and then
fall vertically down into the cannon. As far as an
observer on the ground is concerned, the cart
moves forward with a certain velocity but so does
the ball. The horizontal component of velocity of
the cannon is the same as that of the ball, which
means that the ball is at all times vertically over
the cannon.

This introduces the concept of relative velocity.

Let two observers P and Q have velocities ¥p and
Vg as measured by the same frame of reference.

Then the relative velocity of P with respect to Q,
denoted by Vpg, is simply Vpg = ¥p — V.

(Note that we are subtracting vectors here.) This
definition makes use of the fact that by
subtracting the vector velocity Vg it is as if we
make ) be at rest, so that we can refer to the
velocity of P. In the example of the cannon

above, the relative velocity in the horizontal
direction between the cannon and the ball is
zero. This is why it falls back into the cannon.

Fxample questions

(312 SIS FTYETTITR I FPTIIITTIO POl 003
A car (A) moves to the left with speed 40 km h™'
(with respect to the road). Another car (B) moves
to the right with speed 60 km h™' (also with
respect to the road). Find the relative velocity of B
with respect to A,

Answer

The relative velocity of B with respect ta A is
given by the difference

60kmh' —(—40kmh™ ) =100km h™".

Mote that we must put in the negative sign for the
velocity of A,

Q1) 2sessssssaresss sl iiii LIS TLIIETFTTETRET
Rain comes vertically down and the water has a
velocity vector given in Figure 1.5a (as measured
by an observer fixed on the surface of the earth).
A girl runs towards the right with a velocity vector
as shown. (Again as measured by the observer
fixed on the earth.) Find the velocity of the rain
relative to the running girl.

rain
relative velocity
of rain with

respect to girl

runming girl

ground (- FE—
(a) ib)
Figure 1.5.

Answer

We are asked to find the difference in the vector
velocities of rain minus girl and this vector is
given by Figure 1.5b. The rain thus hits the girl
irom the front.

Q14 #4343 084100 SE I EI LT EERTENT T RT STy
This is the same as example question 9, which we
did in the last section. We will do it again using
the concept of relative velocity. Bicyclist A starts
with initial displacement zero and moves with
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velocity 3 m s™'. At the same time, bicyclist B
starts from a point with displacement 200 m and
moves with velocity —2 m s™'. When does A
meet B and where are they when this happens?

Answer

The velocity of B relative to A is
Viaa = VB — Va
=—-3-2

=-5ms"’

When B meets A, the displacement of B becomes
zero, since A thinks of herself srttmg at the origin.
Thus

0= 200 - 5t

=t = 40s

Graphs for uniform motion

In uniform motion, if we make a graph of
velocity versus time we must get a horizontal
straight line. Figure 1.6 shows the v~t graph for
motion with constant velocity v.

.
velocity

L J

time

Figure 1.6 Uniform velocity means that the

velocity-time graph is a horizontal straight line.

If we wanted to find the displacement from

t = 0 to time {, the answer would be given by
the formula x = xp + vt, The same answer can,
however, also be obtained directly from the
graph: vl is simply the area under the graph, as
shown in Figure 1.7,

This means that the area under the graph gives
the change in displacement. This area added to
the initial displacement of the mass gives the
final displacement at time [.

velocity

time
Figure 1.7 The area under the curve in a

velocity-time graph gives the displacement
change.

A graph of displacement versus time for uniform
motion also gives a straight line (Figure 1.8).

displacement displacement

time time
(a) (h)
Figure 1.8 The displacement-time graph for
uniform motion is a straight line: (a) motion to
the right, (b) motion to the left,

This is the graph of the equation x = xp + vl
Comparing this with the standard equation of a
straight line, y = mx + ¢, we see that the slope
of this graph gives the velocity. We can also
deduce this from the definition of velocity, o
But 7 is also the definition of the slope of the
stralght-hne x-1 graph, hence the slope is the
velocity. In Figure 1.8a the slope is positive,
which means, therefore, that the velocity is
positive, and the mass is moving to the right. In
Figure 1.8b the mass is moving at constant
velocity to the left.

FEETETET Ty —--:.t-rfv- -ﬁﬁfmp,ﬁ, 3
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The time when the graph intersects the time
axis is the time the moving object goes past
point O, the point from which distances and
displacements are measured.

The corresponding velocity-time graph for
negative velocity is shown in Figure 1.9,
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velocity

hd Al bl e rvp s eny s 8wy

e AL IS T T | time

Figure 1.9 The velocity-time graph for uniform
motion towards the left.

The area ‘under’ the curve is below the time
axis and is counted as negative. This is
consistent with the fact that negative velocity
takes the moving object towards the left and
thus towards negative displacements.

Consider now the graph of displacement versus
time in Figure 1.10, We may extract the
following information from it. The initial
displacement is —10 m. The object moves with a
positive velocity of 2 m s~ for the first 10 s of
the motion and with a negative velocity of

2m s 'in the next 5 s. The object is at the
origin at 5 s and 15 5. The change in
displacement is +10 m and the total distance
travelled is 30 m. The average speed is thus

2m s ' and the average velocity is 0.67 m s .
Make sure you can verify these statements.

Il'rmn. | a2 . 2 o P s b o
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Example question

05 OO SN TS VSRS RE T
A mass starts out from O with velocity 10 ms™" and
continues moving at this velocity for 5 s. The
velocity is then abruptly reversed to =5 m s™' and
the object moves at this velocity for 10 s. For this
maotion find:

(a) the change in displacement;

(b} the total distance travelled;

(c) the average speed;

(d) the average velocity,

Answer

The problem is best solved through the
velocity-time graph, which is shown in Figure 1.11.

wm s
1Lf.‘:.’...
{JezzEaEaas

o fEEE T EE AR,

Figure 1.11.

The initial displacement is zero. Thus, after 5 s the
displacement is 10 % 5m = 50 m (area under first
part of the curve). In the next 10 s the
displacement changes by —5 x 10 = =50 m. The
change in displacement is thus 0 m. The object
moved toward the right, stopped and returned to
its starting position. The distance travelled was

50 m in moving to the right and 50 m coming
back giving a total of 100 m. The average velocity
is zero, since the change in displacement is zero.
The average speed is 100 m/15s = 6.7 ms™.

Questions

1 A plane flies 3000.0 km in 5.00 h. What is its
average speed in metres per second?

2 A car must be driven a distance of 120,0 km
in 2.5 h. During the first 1.5 h the average
speed was 70 km h™". What must the average
speed for the remainder of the journey be?

3 A person walks a distance of 3.0 km due

south and then a distance of 2.0 km due east.
If the walk lasts for 3.0 h find
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151 ]

{a) the average speed for the motion;
(b) the average velocity.

Find the displacement-time graph for an
object moving in a straight line whose
velocity—time graph is given in Figure 1.12.
The displacement is zero initially. You do not
have to put any numbers on the axes.

r

L 3

Figure 1.12 For question 4.

An object moving in a straight line according

to the velocity—time graph shown in Figure

1.13 has an initial displacement of 8.00 m.

(a) What is the displacement after 8.00 s?

(b} What is the displacement after 12.0 s?

(e} What is the average speed and average
velocity for this motion?

L

t i L H i
ki vaedld ek e U AL
Figure 1.13 For question 5,
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Two cyclists, A and B, have displacements
0 km and 70 km, respectively. At t = 0 they
begin to cycle towards each other with
velocities 15 km b~ and 20 km h',
respectively. Al the same time, a fly that was
sitting on A starts flying towards B with a
velocity of 30 km h™', As soon as the fly
reaches B it immediately turns around and

flies towards A, and so on until A and B meet.

(a) What will the displacement of the two
cyclists and the fly be when all three
meet?

(b) What will be the distance travelled by the
fly? .

HL only

7 A particle of dust is bombarded by air
molecules and follows a zigzag path at
constant speed v.

{a) Assuming each step has a length d, find
the distance travelled by the dust
particle in time t,

(b} What is the length of the displacement
vector after N steps where N is large?
Assume that each step is taken in a
random direction on the plane. (This
problem assumes you are familiar with
the scalar product of two vectors.)

8 Two cars are moving on the same straight-line

road. Car A mowves to the right at velocity

80 km h™" and car B moves at 50 km h™' to

the left. Both velocities are measured by an

observer at rest on the road.

(a) Find the relative velocity of car B with
respect to car A,

(b} Find the relative velocity of car A with
respect to car B.

9 A cyclist A moves with speed 3.0 m s™" to the

left (with respect to the road). A second cyclist,
B, moves on the same straight-line path as A

with a relative velocity of 1.0 m s~ with respect

o A,

{a)l What is the velocity of B with respect to the
road?

{b) A third cyclist has a relative velocity with
respect to A of —2.0 m s~'. What is the
velocity of C with respect to the road?

10 Two objects A and B move at a constant speed

of 4 ms™" along a circular path. What is the
relative velocity of B (magnitude and direction)
with respect to A when the objects are in the
positions shown in Figure 1.14¢

A

B
Figure 1.14 For question 10.
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11 Find the velocity of the two objects whose
displacement-time graphs are shown in
Figure 1.15.

xfm 4
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(b)

Figure 1.15 For question 11.

12 An object moving in a straight line has a
displacement-time graph as shown in
Figure 1.16.

(a} Find the average speed for the trip.
{b) Find the average velocity for the trip.

L S T R P

Figure 1.16 For question 12,



Motion with constant
acceleration

To complete our description of motion we need the concept of acceleration. This concept

and its use are introduced here.

Objectives

By the end of this chapter you should be able to:

| * recognize situations of accelerated motion and to define acceleration as

A,
ar”

|« describe a motion given a graph for that motion;

* understand that the slope of a displacement—time graph is the velocity;

* understand that the slope of a velocity—time graph is the acceleration and the
area under a velocity-time graph is the change in displacement;

* understand that the area under an acceleration—time graph is the change in
velocity;

* analyse motion from ticker tape, stroboscopic pictures and photogate data;

* solve problems of kinematics for motion in a straight line with constant
acceleration using

i =

[ ¥ =wy+al
x;xh'i‘l’un! -!-%ﬂ'fg

X=Xp+ u+v.3)1
. ( :

v =vi + 2ax

(It must be emphasized that these formulae only apply in the case of
motion in a straight line with constant acceleration.)

1 is the definition of the instantaneous

A‘IEIE’:&“O“ acceleration. We will mostly be interested in

To treat situations in which velocity is not situations where the acceleration is constant, in

constant we need to define acceleration a. If the which case the instantaneous acceleration and

velocity changes by Av in a very short interval the average acceleration are the same thing.

of time Al then Such a motion is called uniformly accelerated
motion. In this case the intervals Av and Af do

= -i-;- not have to be infinitesimally small. Then
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_ A

T oAt

F=Vp
-0

where [ is the total time taken for the trip, v
the final velocity and v the initial velocity.
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 This is the form mmmmw
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If we put a = 0 in this formula, we find that
v = vp at all times. The velocity does not change
since there is no acceleration.

Example question

()1 =4S s I EE TR T T T e ST R T L]
An object starting with an initial velocity of

2.0 m s~ undergoes constant acceleration. After
5.0 5 its velocity is found to be 12.0 m s~'. What
is the acceleration?

Answer

From v = vy 4+ at we find
12=2+ax5

=a=20ms"?
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In solving problems it is sometimes confusing
to decide whether the acceleration is positive or
negative. The only criterion is whether the
acceleration increases or decreases the velocity
(and not speed). In the top part of Figure 2.1 the
velocity is increasing and so the acceleration is
positive. (The direction of positive velocities is
taken to be toward the right.) In the bottom
part the velocity is decreasing and thus the
acceleration is negative.

t=0s% t=1s =2

o 2ms! 4ms! Gms-!
t=0% t=1s t=21s

a . 12ms-! Q , Bms-! Q"’ dms!

Figure 2.1 In the top part the acceleration is positive,
In the bottom part the acceleration is negative,

Similarly, in the top part of Figure 2.2 the velocity
is increasing (—15 m s is larger than —20ms')
and so the acceleration is positive. In the bottom
part the velocity is decreasing (—8 m s~ ' is less
than —5 m s~ ') and so the acceleration is
negative. In the second case note that the speed
(i.e. the magnitude of velocity) is increasing even
though the acceleration is negative.

=10 m s-! ~15ms-1 =720 m &=
r=28 r=0s
—11 m s A mst =3 ms!
=2z r=1s f=0s

Figure 2.2 In the top diagram the acceleration is
positive. In the bottom it is negative,

Acceleration due to gravity

We encounter a very special acceleration when
an object is dropped or thrown. This is an
acceleration that acts on all objects and has the
same magnitude for all bodies independently of
their mass. This assumes conditions of free fall -
that is, only gravity is acting on the body. Air
resistance, friction and other forces are assumed
absent. Under these conditions (as will be
discussed in detail in later chapters) all objects
experience the same acceleration. On earth

the magnitude of this acceleration is about

9.8 m s 2, a number we will often approximate
to 10 m s * for convenience. We always use the
symbol g for the magnitude of the acceleration
due to gravity. Consider a body falling freely
under gravity. We take, as is customary, the
upward direction to be the direction of positive
velocities. On the way up the velocity is
decreasing, hence we state that the acceleration
due to gravity is negative. On the way down the



50 Core - Mechanics

velocity is still decreasing (—12.0 m s is less
than —2 m s™') and so the acceleration due to
gravity is negative on the way down as well as
on the way up (see Figure 2.3). (On the way down
the speed is increasing.)

# direction of Way up way down
positive velocities 100 m s
il (L ?—1 m 5!
=15

) 1 s later
-
{LED.U m & l_ulu el
r=0s

Figure 2.3 Motion in a vertical straight line under
gravity. If the upward direction is the positive
direction for velocity, then the acceleration due
to gravity is negative for both the way up as well
as the way down.

If we had decided, instead, to take the downward
direction as the direction of positive velocities,
then the acceleration due to gravity would have
been positive for both the way up and the way
down. Can you verify yourself that this is the case?

Example question

()2 O A S T T T T T e S I S LT
An object initially at x = 12 m has initial velocity
of —8 m s~ and experiences a constant
acceleration of 2 m s™*, Find the velocity at
f=15s253s5455s, 6sand 10s,

Answer

Applying the equation v = v, + at we get the
results shown in Table 2.1.

Timefs 2 it | T4 IR SRR A
Velocityyms™ -6 -4 -2 0 2 4 12
Table 2.1.

This means that the body stops instantaneously at
t = 4 s and then continues moving. We do not
need to know the initial position of the body to
solve this problem. Note also that the acceleration
is positive and hence the velocity must be
increasing. This is indeed the case as shown in
Table 2.1 (e.g. =4 m s~ is larger than —6 ms™').
However, the speed decreases from t = 0 s to

t = 4 s and increases from t = 4 s onwards.

In motion with constant positive acceleration
the graph showing the variation of velocity
with time is one of the three in Figure 2.4.

This represents a mass moving towards the
right with increasing velocity. This is the graph
of the equation v = vg +at.

The first graph of Figure 2.5 represents a mass
that starts moving to the right (velocity is

&
¥ v ¥
Y //
e . '
AR E o
ﬁ'n

= 5

Figure 2.4 Graphs showing the variation of velocity with time when the
acceleration is constant and positive. In the graphs above, the only difference
is that the initial velocity v, is positive, zero and negative, respectively.

v ¥
Yo

Vo

Figure 2.5 Graphs showing the variation of velocity with time when the
acceleration is constant and negative. In the graphs above, the only difference
is that the initial velocity v, is positive, zero and negative, respectively.
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positive) but is decelerating (negative
acceleration). At a specific time the mass stops
instantaneously and begins moving again
towards the left (negative velocity).

i-'me ‘acceleration can be found from the

- g gaaph; 3We'sde this direty By
_;Emmgfakg+ﬂlandﬂlﬂmm
_ _:e@zﬁonforzmghtlmeymc-i-mx
- _:Ifthg mlemhﬂu 15 not uniform, the
emﬁweﬂaph“ﬂlmtbeashﬁight
]jng'lhe acce],emﬁs}n atam'pﬁmtls
-:mﬂmﬂtﬂl&ﬁﬂhiﬁfiﬁﬁﬂb’fhﬂﬂ@ﬂf 3
 the tangent is the acceleration at that

In the case of uniform motion (no acceleration)
the area under a velocity—time graph gave the
change in displacement. We would like to know
if a similar result holds in the case of
accelerated motion as well.

To do this we will make use of what we learned
in uniform motion together with a little trick.
Consider the velocity-time graph of an
accelerated motion in Figure 2.6. The trick
consists of approximating this motion with
another motion in four steps. We will assume
that during each of the steps the velocity 1s
constant. The velocity then changes abruptly to
a new constant value in the next step. The
approximation is shown in the figure. Clearly,
this is a very crude approximation of the actual
motion.

>
Figure 2.6 The velocity 15 assumed to increase

abruptly and then remain constant for a period
of time,

e Sﬁiﬁh!u!talﬁns‘ﬂwsldpenf ﬁ

We can improve the approximation
tremendously by taking more and thinner
steps, as shown in Figure 2.7.

— — 1

Figure 2.7 The approximation is made better by
considering maore steps.

Clearly, the approximation can be made as
accurate as we like by choosing more and more
{and thus thinner and thinner) steps.

The point of the approximation is that during
each step the velocity is constant. In each step,
the displacement increases by the area under
the step, as we showed in the case of uniform
motion. To find the total change in
displacement for the entire trip we must thus
add up the areas under all steps. But this gives
the area under the original straight line! So we
have managed to show that:

» Even in the case of accelerated motion, the
- change in displacement is the area under
- the velocity-time g;raph.mstasin.trmfnrm
mntmn [Sae Figure 2.8,] - e

Figure 3.8 The area underthe grap‘h‘mthe :
chang in displacement. ;

Using this result we can now find a formula for
the displacement after time {. We are given a
velocity-time graph with constant acceleration
(a straight-line graph in a v-I diagram).
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We want to find the area under the line from
I =0 to a time of s. Since the area we have is
the shape of a trapezoid, the area is the sum
of two parallel bases times height divided by

two:
area = (2110,
N 2

This actually gives a useful formula for
displacement for motion with constant
acceleration. If xp is the initial displacement

P (v ;l’u)'

This is useful when we know the initial and
final velocities but not the acceleration.

However, we do know that v = vy + al and so
the area (i.e. the change in displacement after
time [) is
vog+at +vo

2
= vof + yat?

area =

Thus, the displacement after time ! is this area
added to the initial displacement, that is

X =xg+lr'u!'+%ﬂf2

(We see that when the acceleration is zero, this
formula becomes identical to the one we
derived earlier for constant velocity, namely

X = Xp + vol.) Note that this formula says that
whent =0, x = xp as it should.

In the previous section an analysis of velocity-
time graphs for motion in a straight line
allowed us to derive the basic formulae for such
motion:

v =vg+at
x = xo+vot + yat?

v+
= 1
* ( 2 )

All of these involve time. In some cases, it is
useful to have a formula that involves velocity
and displacement without any reference to
time. This can be done by solving the first

ar

equation for time

V—=Fp
[ =
il

and using this value of time in the second
equation:

¥ —¥g 15 ¥ —vo)?
2 a?
2a(x — xg) = 2vgy — zvﬁ +v2 4+ V.E — 2vig

X =Xxp+Vp

2

v: = v +2a(x —xg)

If the initial displacement is zero, then this
reduces to the simpler

2

v? = v§ + 2ax

Example questions

QE B s S TN IS TR IR H R
A mass has an initial velocity of 10.0 ms™". It
moves with acceleration —=2.00 m s™*, When will
it have zero velocity?

Answer

We start with

v =+ al

v=0 andso

0=wvy+ at

Putting in the numbers we get
0=10+4 (—2.00)t

s0 t = 5.00s,

Q4 TS ST TR TR I I
What is the displacement after 10,0 s of a mass
whose initial velocity is 2.00 m s™' and moves
with acceleration a = 4.00 m s %

Answer

We assume that the initial displacement is zero so
that x = 0.

X = xp+ vp! + %m‘z
50

x=U+2xIﬂ+j:x4:-<ll]"
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A car has an initial velocity of vy = 5.0 ms ™",

When its displacement increases by 20.0 m, its
velocity becomes 7.0 m s~'. What is the
acceleration?

Answer

Again take x; = 0 so that
Vi = vy + 2ax
So72=5%+2ax20

therefore
a=060ms?

A body has initial velocity vy = 4.0ms~" and

a velocity of v=12ms™" after 6.0 s. What
displacement did the body cover in the 6.0 s?

Answer

We may use

(v+ vn)
X = t
2

to gef

12 44
x=( )EI
2

=48m

This is faster than using v = v, + at in order to
find the acceleration as

12 =4+ ba
=a=1333Ims™?

and then

X = vot + jat
=4x5+§x1_333x3r_~.
=48m

The two examples that follow involve motions
that start at different times.

()7 T A e H AL DT T
Two balls start out moving to the right with
constant velocities of 5ms™ and 4 ms™'. The
slow ball starts first and the other 4 s later. How
far from the starting position are they when they
meet?

Answer
See Figure 2.9.
Q o 1= 10 slow hall starts
e
O =25
e
_O.. — i r=4s, fast ball starts
e -
Figure 2.9.

Let the two balls meet t s after the first ball starts
moving. The displacement of the slow ball is

x = 4t m and that travelled by the fast ball

5(t — 4) m. The factor t — 4 is there since after t s
the fast ball has actually been moving for only

t — 4 s. These two displacements are equal when
the two balls meet and thus 4t = 5t = 20, or

t = 20 s. The common displacement is thus 80 m.

O TS T A L T H RN P TSRS
A mass is thrown upwards with an initial velocity
of 30 ms™'. A second mass is dropped from
directly above, a height of 60 m from the first
mass, 0.5 s later. When do the masses meet and
how high is the point where they meet?

Answer

See Figure 2.10. We choose the upward direction
to be positive for velocities and displacements.
The masses experience an acceleration of

~10 m s, the acceleration due to gravity. Since
the motion is along a vertical straight line, we use
the symbol y for displacement rather than x.

60mt @ mass2
V-axis
! 8
positive
displacements
I mass |

Figure 2.10.
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The first mass moves to a displacement given by
i = 30t — 5t%. The second moves to a displacement
of y; = 60 — 5(t — 0.5)*. The displacements are
the same when the masses meet. Thus

301 — 562 = 60 — 5(t — 0.5)%
=% = 2.15%

The common displacement at this time is 42,9 m.

Graphs of acceleration versus time

In a graph of acceleration versus time the area
under the graph gives the change in velocity.
In Figure 2.11 the area from time zero to 4 s is
12 m s ' and thus the velocity after4sis 12 m s~
plus whatever initial velocity the object had.

1

alm 53
&

L]

f T T * s
¢ 05 10 15 20 25 30 35 40

Figure 2.11 The area under an acceleration-time
graph is the change in velocity.

Graphs of displacement versus time

In motion with constant acceleration, a graph
of displacement versus time is a parabola.
Consider a ball that is dropped from rest from a
height of 20 m. The graph of displacement
versus time is shown in Figure 2.12,

wm
-
20 r — 1
i {i1 { mamad
5 =2saadnnbanm: i1 i s e
15 t + e T
B 1 | I 1
B i FHE R t |
afsst it  mmen maant | |
10 e SRR\ SHERESSR SEast
_...E__ a=di REIZ3 mamE _\ ,
5 | L ! .
I |
e el B a Aenma
ks |
i I i i | * ifs
L] 0.5 I 1.5 2

Figure 2,12 Graph of displacement versus time.
The object hits the floor at 2 s..

Example question

QY T T M T T N RO N SR Y
An object with initial velocity 20 m s~ and initial
displacement of =75 m experiences an
acceleration of —2 m s %, Draw the displacement—
time graph for this motion for the first 20 s.

Answer

The displacement is given by x = —75 + 20t — t*
and this is the function we must graph. The result
is shown in Figure 2.13.

x/m
A

Figure 2.13.

AL 5 s the object reaches the origin and
overshools it. It returns to the origin 10 s later

{t = 15 s). The furthest it gets from the origin

on the right side is 25 m. The velocity at 5 s is
10ms ' andat15sitis —10ms™ ", At 10 s the
velocity is zero.

In general, if the velocity is not constant, the
graph of displacement with time will be a
curve. Drawing the tangent at a point on the
curve and finding the slope of the tangent gives
the velocity at that point.

Measuring speed and
acceleration

The speed of an object is determined
experimentally by measuring the distance
travelled by the object in an interval of time.
Dividing the distance by the time taken gives
the average speed. To get as close an
approximation to the instantaneous speed as
possible, we must make the time interval as
small as possible. We can measure speed
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electronically by attaching a piece of cardboard
of known length to the object so that a single
photogate will record the time taken for that
known length to go through the photogate, as
in Figure 2.14. The ratio of the cardboard length
to time taken is the speed of the object when it
is halfway through the photogate.

length of cardbaoard

4 > ]\ photogate
E 1_' timer

e

Figure 2.14 Measuring speed with a photogate.

Speed can also be measured with a tickertape,
an instrument that makes marks on a paper
tape at regular intervals of time (usually 50
marks per second). If one end of the tape is
attached to the moving object and the other
end goes through the marker, then to find the
speed at a particular point we would measure
the distance between two consecutive marks
(distance travelled by the object) and divide by
the time taken (1{50 s). In Figure 2.15 the
dotted lines are supposed to be 0.5 cm apart.
Then the top tape represents uniform motion
with speed

V= 0.5 ‘ms™!

/50 0

=25cms”!

=025ms"!
T G ) W S N
IR IR AR AR R
T T T | : :‘ : T ::
R EEEEEE
bl e b g fedes
S S e — ——————

Figure 2.15 Measuring speed with a tickertape.

In the second tape the moving object is
accelerating. The distance between the first two
dots is about 0.75 cm so the average speed

between those two dots is

L p—
= 7/50 "

=0375ms!

The distance between dots 2 and 3 is 1.25 cm
and so the average speed between those dots is

LY cms”!
1/50

= ﬂ_&lz:'__] m 5_|

F#

Between dots 3 and 4 the distance is 1.5 cm and
50

=

1.5 -1
V= cms
/50

=0.750ms™!

We may thus take the average speed between
t=0sandt=1/50stobe0375ms ',
between! = 1/50sand { = 2/50 5 to be
0.625 m s ' and between { = 2/50 s and

t =3/50 s to be 0.750 m s~ '. Thus the average
acceleration in the first 1/50 5 is 125 ms™*
and in the next 1/50 s it is 6.25 m s . The
acceleration is thus not constant for this
maotion.

The third tape shows decelerated motion.

Related to the tickertape method is that of a
stroboscopic picture (see Figure 2.16). Here the
moving body is photographed in rapid
succession with a constant, known interval of
time between pictures. The images are then
developed on the same photograph, giving a
multiple exposure picture of the motion.
Measuring the distances covered in the known
time interval allows a measurement of speed.

Figure 2.16 Measuring speed with a stroboscope.
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Once measurement of speed is possible,
acceleration can also be determined. To
measure the acceleration at a specific time, £,
one must first measure the velocity a short
interval of time before t, say ! — T /2 and again
a short time after .t + 7 /2 (see Figure 2.17). If
the values of velocity found are respectively u
and v, then

DD .
I
time r - TI2 time f Jime 1+ 712
| | I
velocity, u velocity, v

Figure 2.17 Measuring acceleration requires
knowing the velocity at two separate points in
time.

More on graphs

In kinematics the most useful graph is that of
velocity versus time (v —!). The slope of such a
graph gives the acceleration and the area under
the graph gives the change in displacement.
Let's examine this in detail. Consider the
following problem, which is hard to solve with
equations but is quite easy using a v —I graph.
Two masses, A and B, are to follow the paths
shown in Figure 2.18. The paths are the same
length, but one involves a hill and the other a
valley.

it climbs the hill and then speed up on the way
down until it reaches its original speed on the
level part. The second mass will first speed up
on the way down the hill and slow down to its
original speed when it reaches the level part.
Let us make the v—{ graph for each mass. The
graphs for A and B must look like Figure 2.19.

Y ¥
velocity

Figure 2.19.

It is then obvious that since the areas under the
two curves must be the same (same displacement)
the graph for B must stop earlier: that is, B gets
to the end first. The same conclusion is reached
more quickly if we notice that the average
speed in case B is higher and so the time taken
is less since the distance is the same.

Consider the following question. The graph of
velocity versus time for two objects is given in
Figure 2.20. Both have the same initial and final
velocity. Which object has the largest average
velocity?

vims-1

Figure 2.18 Which mass gets to the end first? They
both travel the same distance.

Which mass will get to the end first?
{Remember, the distance travelled is the same.)
We know that the first mass will slow down as

=1 1 T ' -l
0 05 10 15 20 25 30 35 40
Hs
Figure 2.20 Graph showing the variation of
velocity with time for two motions that have the
same initial and final velocity.

Average velocity is the ratio of total
displacement divided by time taken. Clearly,
object A has a larger displacement (larger area
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under curve). Thus, it has a larger average
velocity. The point is that you cannot say that
average velocity is half of the sum of initial and
final velocities, (Why? Under what circumstances
can you say it?)

Consider finally the graph in Figure 2.21, which
shows the variation of the displacement of an
object with time. We would like to obtain the
graph showing the variation of the velocity
with time.

Ll ofs
4

Figure 221 Graph showing the variation of
displacement with time.

Our starting point is that velocity is the slope of
the displacemeni—time graph. We see that initially
the slope is negative, it becomes less negative
and atf = 2 s it is zero. From then on the slope
becomes increasingly positive. This leads to the
velocity-time graph in Figure 2.22.

Figure 2.22 Graph showing the variation of
velocity with time for the motion in Figure 2.21.

The slope of the velocity-time graph is acceleration
and from the graph we see that the slope is
initially zero but then becomes more and more
positive. Hence, the acceleration-time graph
must be something like Figure2.23.

. T

. Ly i

] 1 2 3 +

Figure 2.23 Graph showing the variation of
acceleration with time for the motion in

Figure 2.21.

In the graphs in this section, the point where
the axes cross is the origin unless otherwise
indicated.

1 The initial velocity of a car moving on a
straight road is 2.0 m s~ and becomes
8.0 m s~ after travelling for 2.0 s under
constant acceleration. What is the acceleration?

2 A plane starting from rest takes 15.0 s to
take off after speeding over a distance of
450.0 m on the runway with constant
acceleration. With what velocity does it
take off?

3 The acceleration of a car is assumed constant
at 1.5 m s™%. How long will it take the car to

accelerate from 5.0 ms ' to 11 ms™'?

4 A car accelerates from restto 28 ms™' in

9.0 5. What distance does it travel?

5 A body has an initial velocity of 12 m s~ and
is brought to rest over a distance of 45 m.
What is the acceleration of the body?

6 A body at the origin has an initial velocity of
—6.0 m s and moves with an acceleration of
2.0 m s™*, When will its displacement

become 16 m?

7 Abody has an initial velocity of 3.0 m s~

and after travelling 24 m the velocity becomes
13 ms™'. How long did this take?

B8 What deceleration does a passenger of a car
experience if his car, which is moving at
100.0 km h™', hits a wall and is brought to

rest in 0.100 s? Express the answer in m s,
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9

A car is travelling at 40.0 m s™'. The driver
sees an emergency ahead and 0.50 s later
slams on the brakes. The acceleration of the
caris —4ms %,

(a) What distance will the car travel before it
stops?

{b) If the driver was able to apply the brakes
instantaneously without a reaction time,
over what distance would the car stop?

(e} Calculate the difference in your answers to
{a) and (b).

(d) Assume now that the car was travelling at
30.0 m s~ instead. Without performing
any calculations, would the answer 1o (c)
now be less than, equal to or larger than
before? Explain your answer.

10 A ball is thrown upwards with a speed of

11

12

240ms .

{a) When is the velocity of the ball 12.0 ms™"?

(b} When is the velocity of the ball
—120ms™"?

fc) What is the displacement of the ball at
those times?

(d) What is the velocity of the ball 1.50 s aiter
launch?

{e) What is the maximum height reached by
the ball?

(Take the acceleration due to gravity to be
10.0ms™2)

A stone is thrown vertically upwards with an

initial speed of 10.0 m s~ from a cliff that is

50.0 m high. :

{a) When does it reach the bottom of the cliff?

(b) What speed does it have just before hitting
the ground?

(¢} What is the total distance travelled by the
stone!

(Take the acceleration due to gravity to be
10.0m s}

A rock is thrown vertically down from the roof
of a 25.0 m high building with a speed of
50ms .

fa) When does the rock hit the ground?

{b) With what speed does it hit the ground?

(Take the acceleration due to gravity to be
10.0ms2)

13

14

15

16

17

E
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A window is 1.50 m high. A stone falling from
above passes the top of the window with a
speed of 3.00 m s~'. When will it pass the
bottom of the window? (Take the acceleration
due to gravity to be 10.0 ms™.)

A ball is dropped from rest from a height of
20.0 m. One second later a second ball is
thrown vertically downwards. If the two balls
arrive on the ground at the same time, what
must have been the initial velocity of the
second ball?

A ball is dropped from rest from the top of a
40.0 m building. A second ball is thrown
downward 1.0 s later.

{a) If they hit the ground at the same time,
find the speed with which the second ball
was thrown.

{b) What is the ratio of the speed of the
thrown ball to the speed of the other as
they hit the ground?

{Take the acceleration due to gravity to be

10.0ms™)

Two balls are dropped from rest from the same
height. One of the balls is dropped 1.00 s after
the other. What distance separates the two
balls 2.00 s after the second ball is dropped?

An object moves in a straight line with an

acceleration that varies with time as shown in

Figure 22.4. Initially the velocity of the ohject

is 2.00ms .

(a) Find the maximum velocity reached in the
first 6.00 s of this motion.

{b) Draw a graph of the velocity versus time.

3=

0 2 4 6

Figure 2.24 For question 17.
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18 Figure 2.25 shows the variation of velocity
with time of an object. Find the acceleration
at 2.0 s,

wim 5!
3‘: s 1§ T i
6 :1 f TEES
¢+ B EaiisatsEaeh
F 252
2 :
SEESEEETC iESiss f5EREss! it
0 1 2 3 4

Figure 2.25 For question 18,

19 Figure 2.26 shows the variation of the
displacement of a moving object with time.
Draw the graph showing the variation of the
velacity of the object with time.

0 05 1 15 2 25 3
Figure 2.26 For question 19.

20 Figure 2.27 shows the variation of the
displacement of a moving object with time.
Draw the graph showing the variation of the
velocity of the object with time.

Figure 2.27 For question 20.

21 Figure 2.28 shows the variation of the
displacement of a moving object with time.
Draw the graph showing the variation of the
velocity of the object with time.

1
'

. f I:m

I 1 1
0 1 2 3 4 5 6
Figure 2.28 For question 21.

22 Figure 2.29 shows the variation of the
displacement of a moving object with time.
Draw the graph showing the variation of the
velocity of the object with time.

Xz
&

1 I 1 Ly tfs
0 0.5 1 1.5 i
Figure 2.29 For question 22.

23 Figure 2.30 shows the variation of the
displacement of a moving object with time.
Draw the graph showing the variation of the
velocity of the object with time.

/\ y
| 2 3 4 5

6

&

0
Figure 2.30 For question 23.
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24 Figure 2.31 shows the variation of the velocity | 27 Figure 2.34 shows the variation of the velocity
of a moving object with time. Draw the graph of a moving object with time. Draw the graph
showing the variation of the displacement of showing the variation of the displacement of
the object with time. | the object with time (assuming a zero initial
displacement).
L
T | wmst 4 I
| 1
‘ |
. 05 | L5 2T | |

. ; : ! 0 § 10 r.f=s ‘
Figure 253 For quesucn 4. | Figure 2.34 For question 27.

25 Figure 2.32 shows the variation of the velocity . o ) ,
of a moving object with time. Draw the graph 28 Figure 2.35 shows the variation of the velocity |

showing the variation of the displacement of of a moving object with time. Draw the graph

the object with time. [ showing the variation of the acceleration of
the object with time.
5
&
05 | 15 2 i e e e g
3
|
Figure 2.32 For question 25.
Figure 2.35 For question 28,
26 Figure 2.33 shows the variation of the velocity
of a moving object with time. Draw the graph 29 Figure 2.36 shows the variation of the velocity
showing the variation of the displacement of of a moving object with time. Draw the graph
the object with time (assuming a zero initial showing the variation of the acceleration of
displacement). the object with time. 1
v ¥
Y -
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Figure 2.33 For question 26, Figure 2.36 For question 29,
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30 Your brand new convertible Ferrari is parked
15 m from its garage when it begins to rain.
You do not have time to get the keys so you
begin to push the car towards the garage. If
the maximum acceleration you can give the
car is 2.0 m s~ by pushing and 3.0 m s~ ? by
pulling back on the car, find the least time it
takes to put the car in the garage. (Assume
that the car, as well as the garage, are point
objects.)

31 Figure 2.37 shows the displacement versus
time of an object moving in a straight line.
Four points on this graph have been selected.
{a) Is the velocity between Aand B positive,
zero or negative?

(b} What can you say about the velocity
between B and C?

(c) Is the acceleration between A and B
positive, zero or negative?

(d) Is the acceleration between C and D
positive, zero or negative?

A

\i c

Figure 2.37 For question 31.

32 A hiker starts climbing a mountain at 08:00 in
the moming and reaches the top at 12:00
(noon). He spends the night on the mountain
and the next day at 08:00 starts on the way
down following exactly the same path. He
reaches the bottom of the mountain at 12:00.
Prove thal there must be a time between
08:00 and 12:00 when the hiker was at the
same spot along the route on the way up and
on the way down.

33 Make velocity-time sketches (no numbers are
necessary on the axes) for the following
motions.

(a) A ball is dropped from a certain height
and bounces off a hard floor. The speed
just before each impact-with the floor is

L 4

the same as the speed just after impact.
Assume that the time of contact with the
floor is negligibly small.

{(b) A cart slides with negligible friction along
a horizontal air track. When the cart hits
the ends of the air track it reverses
direction with the same speed it had right
before impact. Assume the time of contact
of the cart and the ends of the air track is
negligibly small.

{c) A person jumps from a hovering
helicopter. After a few seconds she opens
a parachute. Eventually she will reach a
terminal speed and will then land.

34 A cart with a sail on it is given an initial velocity
and moves toward the right where, from some
distance away, a fan blows air at the sail (see
Figure 2.38). The fan is powerful enough to stop
the cart before the carnt reaches the position of
the fan. Make a graph of the velocity of the cant
as a function of time that best represents the
motion just described. List any assumptions you
made in drawing your graph.

Figure 2.38 For question 34.

35 A stone is thrown vertically up from the edge
of a cliff 35.0 m from the ground. The initial
velocity of the stone is 8.00 m 57", (See
Figure 2.39.)

ve=8.00ms!

350m

Figure 2.39 For question 35.
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37

{a} How high will the stone get?

{b) When will it hit the ground?

{c) What velocity will it have just before
hitting the ground?

(d) What distance will the stone have covered?

{e) What is the average speed and average
velocity for this motion?

(fi Make a graph to show the variation of
velocity with time.

(g} Make a graph to show the variation of
displacement with time.,

(Take the acceleration due to gravity to be
10.0ms™)

A ball is thrown upward from the edge of a

cliff with velocity 20.0 m s™', It reaches the

bottom of the cliff 6.0 s later,

{a) How high is the cliff?

{b) With what speed does the ball hit the
ground?

A rocket accelerates vertically upwards from

rest with a constant acceleration of

4.00 m s~ The fuel lasts for 5.00 s.

{a} What is the maximum height achieved by
this rocket?

{b) When does the rocket reach the ground
again?

{c) Sketch a graph to show the variation of the
velocity of the rocket with time from the
time of launch to the time it falls to the
ground.

(Take the acceleration due to gravity to be
10.0ms2)

A hot air balloon is rising vertically at constant
speed 5.0 m s~ '. A sandbag is released and it
hits the ground 12.0 s later.

(a) With what speed does the sandbag hit the
ground?

(b) How high was the balloon when the
sandbag was released?

(c) What is the relative velocity of the
sandbag with respect to the balloon 6.0 s
aiter it was dropped?

(Assume that the balloon's velocity increased

to 5.5 m s~ after releasing the sandbag,.

Take the acceleration due to gravity to be

10.0 ms™2)
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The concept of force

Two basic ingredients of mechanics are the concepts of mass and force. A force can
deform, stretch, rotate or compress a body and is intimately connected to the
acceleration it can produce on a body (the relation between acceleration and force will
be the detailed subject of a later chapter). Mass is a measure of the amount of material
in a body, measured in kilograms; in classical mechanics the mass of an object is a
constanl. There are different kinds of forces in nature; the most common force of
everyday life is the force of gravitation - the force with which the earth pulls us towards
the centre of the earth. We give this force a special name: the weight of a body. We don't
fall to the centre of the earth because the ground on which we stand exerts another
force on us, upwards - a force due to the contact between ourselves and the ground. The
origin of this force is electromagnetic. This is also the force that keeps us alive (atoms
exist and bind into molecules because of this force), and prevents the chair on which you
are sitting from collapsing, and so on. These are the only forces that affect our daily lives.
It turns out that the electromagnetic force is just one very special aspect of a more
general force, called the electroweak force. The other aspect of this force (the weak
nuclear force) is responsible for decay processes inside atomic nuclei. Finally, the colour
force, or strong nuclear force, keeps the guarks bound inside protons and neutrons.
Physicists hope that the electroweak force and the nuclear force will one day be shown
to be different aspects of one more general force (the ‘unified force’) but this has not
yet been accomplished. An even more speculative expectation is that the gravitational
force, too, will be shown to be part of an even more unified force, whose different
aspects we see as the three different forces today. But none of these attempts for a
complete unification has been achieved yet. Apart from the gravitational, electroweak
and colour force, no other forces, or interactions, are known at the present time.

 Objectives

By the end of this chapter you should be able to:

+ state the difference between mass and weight;

+ define gravitational field strength and give its units (N kg ' or m s °);

 draw vectors representing forces acting on a given body:

+ identify situations in which frictional forces develop and draw those
frictional forces;

» use Hooke’s law correctly, T = kx.




64 Core - Mechanics
= - = _—=\

Forces and their direction

A force is a vector quantity. Its direction is very
important and it is crucial to be able to identify
the direction of a given force. What follows is a
list of the forces we will be dealing with in this
and later chapters, as well as a discussion of
their properties and direction. The unit of force
is the newton; this will be properly defined
when we discuss the second law of mechanics.

Weight

This force is the result of the gravitational
attraction between the mass in question and
the mass of the earth. (If the body finds itself
on a different planet then its weight is defined
as the gravitational attraction between its mass
and that planet's mass.) The weight of a body is
the gravitational force experienced by that
body, which on earth is given by the formula

W =mg

where

* m is the mass of the body measured in
kilograms

* g is the gravitational field strength of the
earth, which is a property of the gravitational
field of the earth (see Chapter 2.10). Its units
are newton per kilogram, N kg™'. The
gravitational field strength is also known as
‘the acceleration due to gravity'. The units

of g are thus also m s

Ifmisin kg and g in Nkg™' or m s * then W is
in newtons, M. On the surface of the earth,

g = 9.81 N kg™ - a number that we will often
approximate by the more convenient 10 N kg .
This force is always directed vertically
downward, as shown in Figure 3.1.

earth

Figure 3.1 The weight of an object is always
directed vertically downward.

The mass of an object is the same everywhere
in the universe, but its weight depends on the
location of the body. For example, a mass of

70 kg has a weight of 687 N on the surface of
the earth (g = 9.81 N kg ') and a weight of
635 N at a height of 250 km from the earth’s
surface (where g = 9.07 N kg™'). However, on the
surface of Venus, where the gravitational field
strength is only 8.9 N kg™, the weight is 623 N.

Tension

A string that is taut is said to be under tension.
The force that arises in any body when it is
stretched is called tension. This force is the
result of electromagnetic interactions between
the molecules of the material making up the
string. A tension force in a string is created when
two forces are applied in opposite directions at
the ends of the string (see Figure 3.2).

T T
m
Figure 3.2 A tension force in a string.

To say that there is tension in a string means
that an arbitrary point on the string is acted
upon by two forces (the tension T) as shown in
Figure 3.3. If the string hangs from a ceiling
and a mass m is tied at the other end, tension
develops in the string. At the point of support
at the ceiling, the tension force pulls down on
the ceiling and at the point where the mass is
tied the tension acts upwards on the mass.

L

m

mg

Figure 3.3 The tension is directed along the string.



2.3 The concept of force 65

In most cases we will idealize the string by
assuming it is massless. This does not mean
that the string really is massless, but rather that
its mass is so small compared with any other
masses in the problem that we can neglect it. In
that case, the tension | is the same at all points
on the string. The direction of the tension force
is along the string. Further examples of tension
forces in a string are given in Figure 3.4. A string
or rope that is not taut has zero tension in it.

siring over
pulley
=
of T
W
bW

string is slack. T=0

W
Figure 3.4 More examples of tension forces.

Normal reaction (contact) forces

If a body touches another body, there is a force of
reaction or contact force between the two bodies.
This force is perpendicular to the body exerting
the force. Like tension, the origin of this force is
also electromagnetic. In Figure 3.5 we show the
reaction force on several bodies.

Drag forces

Drag forces are forces that oppose the motion of
a body through a fluid (a gas or a liquid).
Typical examples are the air resistance force
experienced by a car (see Figure 3.6) or plane, or
the resistance force experienced by a steel
marble dropped into a jar of honey. Drag forces

== = = =S et "1
R

5. o

b

4+R
W
R
W
comact contact
force forces

i

Figure 3.5 Examples of reaction forces, R.

- A

are directed opposite to the velocity of the body
and in general depend on the speed of the body.
The higher the speed, the higher the drag force.

drag

mcln

Figure 3.6 The drag force on a moving car.

Upthrust

Any object placed in a fluid experiences an
upward force called upthrust (see Figure 3.7). If
the upthrust force equals the weight of the
body, the body will float in the fluid. If the

upthrust 4
o & s e e s 1 o e e rer gt =
upthrust
hiZ weight §
il
¢ weight
Figure 3.7 Upthrust,



66 Core - Mechanics
e ——"

upthrust is less than the weight, the body will
sink. Upthrust is caused by the pressure that
the fluid exerts on the body.

Frictional forces

Frictional forces oppose the motion of a body.
They are also electromagnetic in origin. (See
Figure 3.8.)

(k)

tendency for
motion down
the plang

{c)

Figure 3.8 Examples of frictional forces, f. In (a)
and (b) the motion to the right is opposed by a
frictional force to the left. In (c) the body does
not move but has a tendency to move down the
plane. A frictional force directed up the plane
opposes this tendency.

Friction arises whenever one body slides over
another. In this case we speak of sliding or -

kinetic friction. Friction also arises whenever

there is just a tendency for motion, not

necessarily motion itself, such as when a block
rests on an inclined plane or if a block on a level
road is pulled by a small force that does not

result in motion. In this case, we speak of static |
friction. Suppose that the plane on which the

block rests is slowly elevated (Figure 3.8¢). The

block will tend to move to the left. This motion

will be opposed by a frictional force. As the plane

is elevated even more, the frictional force needed

to keep the block at rest increases. However, the
static frictional force cannot exceed a certain '
maximum value, If the maximum value of the
frictional force is reached and the plane is then
elevated a bit more, the frictional force will not

be able to keep the body in equilibrium and the
Block will slide down. As soon as. the body begins

to slide, the frictional force opposing the motion
becomes the kinetic friction force, The kinetic
friction force is always less than the maximum
value of the static friction force. This is a well-
known phenomenon of everyday life, It takes a
lot of force to get a heavy piece of furniture to
start moving (you must exceed the maximum
value of the static friction force), but once you
get it moving, pushing it along becomes easier
(you are now opposed by the smaller kinetic
friction force).

Example question

(}1 reTrssswssrsTsITITYTEY I EEINFERINETEERENS
A brick of weight 50 M rests on a horizontal
surface. The maximum frictional force that can
develop between the brick and the surface is

30 N. When the brick slides on the surface, the
frictional force is 10 N. A horizontal force F is
applied to the brick, its magnitude increasing
slowly from zero. Find the frictional force on the
brick for various values of F.

Answer

The maximum frictional force is 30 N, This means
that as long as Fis less than 30 N, the frictional
force equals F and the brick stays where it is. If F
becomes slightly more than 30 N, the frictional
force cannot match it and thus the brick will move.
But as soon as the brick moves, the frictional
force will drop to the kinetic value 10 N, for all
values of F > 30 N. We can summarize these
results as shown in Table 3.1,

F ON 12N 2B N 28N anN 0N 40N
f oW 12N WN 2o N 30N N 0N
no no no ng no
motion  motion  motion  motion  motion  motion  motion
Table 3.1.

Frictional forces between the road and the tyres
are what allow a car to take a turn. Although,
generally, frictional forces oppose the motion of
a body, in some cases frictional forces are
responsible for motion. A typical example is the
wheels of a car. The engine forces the wheels to
turn. The wheels exert a force on the ground
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and so the ground exerts an equal and opposite
force on the wheels, making them move
forward. This will become clearer when we look
at Newton's third law in a later chapter.

Free-body diagrams

A free-body diagram is a diagram showing the
magnitude and direction of all the forces acting
on a chosen body. The body is shown on its
own, free of its surroundings and of any other
bodies it may be in contact with. In Figure 3.9
we show three situations in which forces are
acting; below each is the corresponding free-
body diagram for the shaded bodies.

. > (O

T R

(ﬂ
W [

w

Figure 3.9 Free-body diagrams for the bodies in
dark grey.

In any mechanics problem, it is important to be
able to draw correctly the free-body diagrams
for all the bodies of interest. It is also important
that the length of the arrow representing a
given force is proportional to the magnitude of
the force.

Hooke’s law

If we try to extend a spring, a force pulls the
spring back to its original length; if we try to
compress a spring, again a force tries to pull the
spring back to its original length (see Figure 3.10).
The force in the spring, the tension, has a simple
relationship to the amount by which the spring
is extended or compressed.

If this amount is x, then the tension T is
proportional to x (see Figure 3.11). This
statement is known as Hooke's law. This means

natural length

tension due o compression

i tension due to
| extension

and opposite to the extension.

that the more we want to extend or compress
the spring, the bigger the force required to

pull or push it with. In equation form it says
that T = kx, where k is the constant of
proportionality known as the spring constant. It
varies from spring to spring. Its units are those

of force over extension: N m ™.

X

Figure 3.11 The tension in the spring is linearly
proportional to the extension.

The extension or compression of the spring
must not be too large, otherwise Hooke's law
isn't applicable. The range of extensions (or
compressions) for which Hooke's law is satisfied
is known as the elastic limit; beyond the elastic
limit the relationship between tension and
extension is more complicated.

Questions

1 A mass swings at the end of a string like a
pendulum. Draw the forces on the mass at:
{a) its lowest position;

{b) its highest position.

2 A mass rests on a rough table and is

connected by a string that goes over a pulley
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Figure 3.12 For question 2.

to a second hanging mass, as shown in
Figure 3.12. Draw the forces on each mass.
A mass is tied to a string and rotates in a
vertical circle, as shown in Figure 3.13. Draw
the forces on the mass when the string is

horizontal.
@\

Figure 3.13 For question 3.

A bead rolls on the surface of a sphere, having

started from the top, as shown in Figure 3.14,

Draw the forces on the bead:

{a) at the top;

(b) at the point where it is about 1o leave the
surface of the sphere.

Figure 3.14 For question 4.

A mass hangs at the end of a vertical spring
which is attached to the ceiling. Draw the
forces on:

{a) the hanging mass;

{b) the ceiling.

Look at Figure 3.15. In which case is the
tension in the string largest?

5000 N
wall
rE—— —_—
S00N S0ON
+-— e —

Figure 3.15 For question 6. .

7

10

A force of 125 N is required to extend a spring
by 2.8 cm. What force is required to stretch
the same spring by 3.2 cm?

A mass hangs attached to three strings, as
shown in Figure 3.16. Draw the forces on:
{a) the hanging mass;

{b) the point where the strings join.

Figure 3.16 For question 8.

A spring is compressed by a certain distance
and a mass is attached to its right end, as shown
in Figure 3.17. The mass rests on a rough table.
What are the forces acting on the mass?

-

Figure 3.17 For question 9.

A block rests on an elevator floor as shown, as
shown in Figure 3.18. The elevator is held in
place by a cable attached to the ceiling. Draw
the forces on:

{a) the block;

(b) the elevator.

Figure 3.18 For question 10.



Newton’s first law

Mechanics rests on Newton's three laws. The first law is discussed in this chapter. The
first law leads to a study of systems in equilibrium, which is a state in which the net force

on the system is zero.

g [lhjautwes

By the end of this chapter you should be able to:
+ relate situations in which the acceleration is zero to equilibrium

situations in which the net force is zero;

Newton’s first law

In ancient times, Aristotle had maintained
that a force is what is required in order to
keep a body in motion. The higher the speed,
the larger the force needed. Aristotle’s idea of
force is not unreasonable and is in fact in
accordance with experience from everyday
life: it does require a force to push a piete of
furniture from one corner of a room to
another, What Aristotle failed to appreciate is
that everyday life is plagued by friction. An
object in motion comes to rest because of
friction and thus a force is required if it is to
keep moving. This force is needed in order to
cancel the force of friction that opposes the
motion. In an idealized world with no
friction, a body that is set into motion does
not require a force to keep it moving. Galileo,
2000 years after Aristotle, was the first to
realize that the state of no motion and the
state of motion with constant speed in a
straight line are indistinguishable from

each other. Since no force is present in the
case of no motion, no forces are required in
the case of motion in a straight line with

» find the net force on a body using the methods of vector addition;
+ solve problems of equilibrium.

constant speed either. Force is related,
as you will see, to changes in velocity
(i.e. accelerations).

Newton's first law (generalizing statements of
Galileo) states the following:

> Mennnrﬁnmuctunnbodar ﬂmthudymiﬂ
- either remain at rest or continue to move
~ along a straight line with constant speed.

A body that moves with acceleration (i.e.
changing speed or changing direction of
motion) must have a force acting on it. An ice
hockey puck slides on ice with practically no
friction and will thus move with constant speed
in a straight line. A spacecraft leaving the solar
system with its engines off has no force acting
on it and will continue to move in a straight
line at constant speed (until it encounters
another body that will attract or hit it). Using
the first law, it is easy to see if a force is acting
on a body. For example, the earth rotates
around the sun and thus we know at once that
a force must be acting on the earth.
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Newton’s first law is also called the law of
inertia. Inertia is the reluctance of a body to
change its state of motion. Inertia keeps the
body in the same state of motion when no
forces act on the body. When a car accelerates
forward, the passengers are thrown back into
their seats. If a car brakes abruptly, the
passengers are thrown forward. This implies
that a mass tends to stay in the state of motion
it was in before the force acted on it. The
reaction of a body to a change in its state of
motion {(acceleration) is inertia.

A well-known example of inertia is that of a
magician who very suddenly pulls the
tablecloth off a table leaving all the plates,
glasses, etc., behind on the table. The inertia
of these objects makes them ‘want’ to stay on
the table where they are. Similarly, if you pull
very suddenly on a roll of kitchen paper you
will tear off a sheet. But if you pull gently you
will only succeed in making the paper roll
rotate.

Inertial frames of reference

A system on which no forces act is called an
inertial frame of reference. Inertial reference
frames played a crucial role in the history of
physics: observers belonging to different
inertial frames will come up with the same
laws of physics. For example, an observer at
rest on the surface of the earth is an
(approximate) inertial reference frame. (We
say approximate, since the earth rotates
about its axis as well as around the sun - but
these motions produce small accelerations
and over a short interval of time we can
ignore them.) A passenger on a train that
moves with constant velocity relative to an
observer on the earth is also an inertial
reference frame. The rwo observers will
discover the same laws of physics by
performing experiments in their respective
frames. There is no experiment that the
observer on the train can perform whose
result will be to determine that the train is
moving. Nor will he ever discover laws of

physics that are different from the ones
discovered by the observer on the ground.

Equilibrium

When the net force on a body is zero, the body
is said to be in equilibrium. If a body is
displaced slightly from its equilibrium position,
the net force on the body may or may not be
zero. If it is still zero, the position of
equilibrium is called a neutral equilibrium
position. An example is a mass resting on a
horizontal table, as in Figure 4.1.

displaced

—_—
position of neatral baody still in
equilibrium equilibrivm

Figure 4.1 In a position of neutral equilibrium the
net force on a body is zero. A displacement
results in another equilibrium position.

On the other hand, if after displacing the body
from its equilibrium position the net force is
no longer zero, then we distinguish two kinds
of equilibrium in the original position. If the
net force in the displaced position tends to
move the body back towards the initial
equilibrium position, then we speak of stable
equilibrium. If, on the other hand, the force on
the body tends to make it move even further
from the initial position, we speak of unstable
equilibrium (see Figure 4.2).

stible

“-—®

Figure 4.2 In unstable equilibrium the net force
on the body is zero, but a small displacement
results in motion away from the equilibrium
position. In stable equilibrium, the motion is
back towards the equilibrium position.

unstable




2.4 Mewton's first law 71
= ——— ]}

Note that an equilibrium position can be
both stable and unstable at the same time.
For example, a mass on a surface that
resembles a saddle is in equilibrium if placed
at the centre of the saddle. The equilibrium
is stable or unstable depending on the
direction in which the mass is then
displaced.

Equilibrium of a point particle means that
the net force on the point is zero. To find the
net force we must use the methods of vector
addition, and here we will exclusively use

the component method. We choose a set of
axes whose origin is the point body in
question and find the components of all the
forces on the body. As promised in Chapter 1.4,
we will use only positive components. Then
the sum of the x components to the ‘right’
must equal the sum of the x components

to the 'left’, and the sum of the y components
‘up’ must equal the sum of the y components
‘down’. Let us look at a simple example.

A block of weight 10.0 N rests on a horizontal
table. What is the normal reaction on the
block from the table? Figure 4.3 shows the
forces on the block, which is assumed to be a
point object. The dotted lines represent the
axes along which we will take components.
There are no forces with horizontal )
components. In the vertical direction the
component of K is simply R in the ‘up’
direction, The 10.0 N force has a component
of 10.0 N in the ‘down’ direction. Equating
the up with the down components we find

R =10.0 N.

i g free-body
R 4 diagram
¥
1 Lt
100N
T v I0ON

Figure 4.3 The forces acting on a block resting on
a table.

Let us look at a slightly less trivial example. A
20.0 N weight hangs from strings as shown in
Figure 4.4. We want to find the tension in each
string.

' 200N

200N

Figure 4.4 Free-body diagrams for joining
point and hanging mass.

We call the tensions in the three strings 7, R
and S. The point where the strings meet is in
equilibrium and so the net force from these
three tensions is zero. Getting components
along the horizontal and vertical directions we
have:

Ix=0
Ty =T ‘down’
R, = R cos 30"

= 0.866R 'left’
Ry = R sin30°

= 0.500R ‘up’
S5¢ = 5 cos45”

= 0.7075 ‘right’
5y = 5sin45°

= 0.7075 ‘up’

We thus have

0.866R = 0.7075
0.7075 + 0500R =T

Equilibrium of the hanging mass demands,
however, that T = 20.0 N. Thus we can find
R=146Nand5 =179 N.
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Example questions

Q] Sttt sr st PTIT T PP O T LI FEFTIER
A mass m = 10.0 kg hangs from two strings
which are attached to the ceiling as shown in
Figure 4.5, What is the tension in each string?

mg

Figure 4.5.

Answer

The three forces acting on m are as shown, with T
and S being the tensions in the two strings. Taking
components about horizontal and vertical axes
through m we find (here we will make use of only
positive components) T, = T cos 30° = 0.87 T to the
left, T, = Tsin 30° = 0.50T up, S, = S cos 50° =
0.645 to the right, 5, = 5 sin 50° = 0.775 up. The
weight mg is already along one of the axes: it has a
component mg = 100 N down. Equilibrium thus
demands (net force has zero x and y components)

0.87T =0.645
0.50T +0.775 =100

from which we find T = 65.3 M and § = E?‘,B N,

()} AEEMESac LIS I TS T I T NI I IR VNI FITY)
A block of weight 50.0 N rests on a rough
horizontal table and is attached by strings to a
hanging mass of weight 12.0 N, as shown in
Figure 4.6. Find the force of friction between the
block and the table if the block on the table is in
equilibrium.

Answer

The diagram shows the forces acting on the block
and the mass as well as the tensions at the point
where the three strings join. Since that point is in
equilibrium, the net force on it is zero. Taking
components of the forces R, 5 and 12.0 N along
horizontal and vertical axes we find:

.= R 'left’
K,=0

307

'

120N
Figure 4.6.
5. = Scos 30°
= 0.866 5 ‘right’
5, = §sin 30°
= 0.5005 ‘up’

Equilibrium then demands that

R=0.8665
0.5005=T
=12.0

since T = 12.0 N by the equilibrium of the hanging
mass. We can thus find § = 24.0 N and so R =
20.8 N. Demanding now equilibrium for the block
on the table, we see that the frictional force must
equal R, i.e. 20.8 M.

(X} ERIRITFheassile sraldaibitainiso sidoddtiintsi

A mass of 125 g is attached to a spring of spring

constant k = 58 N m™" that is hanging vertically.

(a) Find the extension of the spring,

{b) If the mass and the spring are placed on the
moon, will there be any change in the extension
of the spring?

Answer

{a) The forces on the hanging mass are its weight
and the tension of the spring. Since we have
equilibrium, the two forces are equal in
rmagnitude. Therefore
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kx = mg ;
|
_ g i
X k i
- 0.125 %10
B 58
=2.2cm

{(h) The extension will be less, since the
acceleration of gravity is less.

Questions

1 What is the net force on each of the bodies
shown in the diagrams in Figure 4.7? The
only forces acting are the ones shown.
Indicate direction by ‘right’, ‘left’, ‘up’ and

‘down’,
BN
a) 12N (k) T
E—,.. b3
18N &N
&N
= 4N —— 10N
| | —————
$N 0N
ic) N (dy
26 N
ey | .
y 0
4N
oM 6N |
Figure 4.7 For question 1. |
2 Find the magnitude and direction of the net |

force in Figure 4.8.

Figure 4.8 For question 2.

3 In Figure 4.9, what must F and @ be such that
the three forces give a net force of zero?

12N

40° &

I5N
Figure 4.9 For question 3.

4 Why is it impossible for a mass to hang
attached to two horizontal strings as shown
in Figure 4.10¢

Figure 4.10 For question 4.

5 A mass is hanging from a string that is
attached to the ceiling. A second piece of
string (identical to the first) hangs from the
lower end of the mass. (See Figure 4.11.)

v
Figure 4.11 For question 5.

Which string will break if:

{a) the bottom string is slowly pulled with
ever increasing force;

{b) the bottom string is very abruptly pulled
down?
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6 A force of 10.0 N is acting along the negative
x-axis and a force of 5.00 N at an angle of 20°
with the positive x-axis. Find the net force.

7 A force has components 2.45 N and 4.23 N i

along two perpendicular axes. What is the
magnitude of the force? | || s
8 A weight of mass 12.5 kg hangs from very -
light, smooth pulleys as shown in Figure 4.12. | Ij
What force must be applied to the rope so that Figure 4.14 For question 10.

the mass stays at rest?

11 A rod of mass 5.00 kg is first pulled and then
pushed at constant velocity by a force at 45°
| to the horizontal as shown in Figure 4.15,
' Assuming that in both cases the frictional
force is horizontal and equal to 0.4 times the
normal reaction force on the rod, find the
force F in each case. What does this imply?

i%adl
==

|

Figure 4.12 For question 8.

9 A mass of 2.00 kg rests on a rough horizontal
table. The maximum frictional force between
the mass and the table is 12 N. The block is
attached 1o a hanging mass by a string that

Figure 4.15 For question 11,

goes over a smooth pulley. What is the ldrgest 12 A 455 N crate is being pulled at constant
mass that can hang in this way without forcing velocity by a force directed at 30° to the
the block to slide? (See Figure 4.13.) horizontal as shown in Figure 4.16. The

frictional force on the crate is 1163 N. What is
the magnitude of the pulling force?

e A
[mw - -y = PSSO -
e ]

i s@ssamamnd

Pl

Figure 4.13 For question 9. (ERAmsEay sy
Figure 4.16 For question 12.

10 A mass of 5.00 kg hangs attached to three

strings as shown in Figure 4.14. Find the 13 (a) A 2598 kg aeroplane is moving
tension in each string. (Hint: Consider the horizontally in a straight line at constant
equilibrium of the point where the strings velocity, What is the upward force on the

join.) aeroplane?
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(b) The plane is now diving (again at constant | 15 A mass m is attached to two identical springs
velocity) making an angle of 10° to the ; of spring constant k. The other end of each
horizontal. Find the lift force on the plane | spring is attached to the ceiling so that each
assuming that it is normal to the velocity makes an angle # with the vertical, as shown
of the plane. in Figure 4.18. If the mass is in equilibrium,

14 A mass M is connected with a string to a what is the extension of each spring?

smaller mass m, The mass M is resting on an
inclined plane and the string goes over a
pulley at the top of the plane so that the

mass m is hanging vertically, as shown in
Figure 4.17. What must the angle of the plane
be in order to have equilibrium?

Figure 4.18 For question 15.

Figure 4.17 For question 14.
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Newton’s second and
third laws

These laws are the cornerstone of what is called classical physics. They imply that, once
the forces that act on a system are specified and the motion of the system is known at
some point in time, then the motion of the systern can be predicted at all future times.
This predictability is characleristic of classical systems as opposed to quantum ones, where
the uncertainty principle introduces a probabilistic interpretation on the future evolution of
the system. Lately, this sharp definition of predictability has been eroded somewhat even
for classical systems: chaotic behaviour can imply a loss of predictability in some cases.
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Objectives

By the end of this chapter you should be able to:

* recognize situations of equilibrium, i.e. situations where the net force and
hence the acceleration are zero;

* draw the forces on the body of interest and apply Newton's second law
on that body, F = ma;

+= recognize that the net force on a body is in the same direction as the J

acceleration of that body;
= identify pairs of forces that come from Newton's third law.
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Newton’s second law

This fundamental law asserts that:

Figure 5.1 shows the net force on a freely falling
body, which happens to be its weight, W = mg.
By Newton's second law, the net force equals
the mass times the acceleration, and so

mg =ma
=a=9

that is, the acceleration of the freely falling
body is exactly g. Experiments going back to
Galileo show us that indeed all bodies fall in a
vacuum with the same acceleration (the
acceleration due to gravity) irrespective of their
density, their mass, their shape and the material
from which they are made.

Figure 5.1 A mass falling to the ground acted
upon by gravity.

It is important to realize that the second law
speaks of the net force on the body. Thus, if a
number of individual forces act on a body, we
must first find the net force by vector addition.

A simple everyday example of the second law is
that when you jump from some height you
bend your knees on landing. This is because by
bending your knees you stretch out the time it
takes to reduce your speed to zero, and thus
your acceleration (deceleration) is least. This
means that the force from the ground on to you
is least.

Example questions

()] s NS EH H ITOeerse 38

A man of mass m= 70 kg stands on the floor of

an elevator. Find the force of reaction he

experiences from the elevator floor when:

{a) the elevator is standing still;

(b) the elevator moves up at constant speed
Ims;

(c) the elevator moves up with acceleration
4ms

(d) the elevator moves down with acceleration
4ms .

Answer

Two forces act on the man: his weight mg
vertically down and the reaction force R from the
floor vertically up.

(a) There is no acceleration and so by Newton's
second law the net force on the man must be
zero. Hence

R=mg

=700 N
(b) There is no acceleration and so again
R=mg

=700 N
(c) There is acceleration upwards. Hence
R—mg=ma
50

R=mg+ma
=700 N+ 280 N
=930 N
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(d) We again have acceleration, but this time in
the downward direction. Hence

mg — K =ma

50

R =mg—ma
=700 N — 280 N
=420 N

Note: In (c) the acceleration is up, so we find the
net force in the upward direction. In (d) the
acceleration is down, so we find the net force in
the downward direction. Newton's law in all
cases involves accelerations and forces in the
same direction, s

Q2 EETEEEIIIIIItaTITTET Y srprT T
A man of mass 70 kg is moving upward in an
elevator at a constant speed of 3 ms™'. The
elevator comes to rest in a time of 2 s, What is the
reaction force on the man from the elevator floor
during the period of deceleration?

Answer

The acceleration experienced by the man is
~1.5ms ™ So
R—mg=ma
= R=mg+ ma
=700+ (—=105) =595 N

If, instead, the man was moving downward and
then decelerated 1o rest, we would have
mg— R =ma
= K=mg - ma
=700 —(=105) = 805 N

Both cases are easily experienced in daily life.
When the elevator goes up and then stops we feel
‘lighter” during the deceleration period. When
going down and about to stop, we feel ‘heavier’
during the deceleration period. The feeling of
‘lightness’ or *heaviness’ has to do with what
reaction force we feel from the floor.

Q3 Eseseeeresytiiiiils SARRCIS Ny FITEFTERTL § 535
A hot air balloon of mass 150 kg is tied to the
ground with a rope (of negligible mass). When
the rope is cut, the balloon rises with an

acceleration of 2 m s . What was the tension
in the rope?

Answer

The forces on the balloon originally are its weight,
the upthrust and the tension (see Figure 5.2).

T

Figure 5.2.

Initially we have equilibrium and so U = W+ T.
After the rope is cut the net force is U — W and so
U—-W=ma

= 150 x 2

= 300 N
From the first equation

T=U-W=300N

The next examples show how Newton’s second
law is applied when more than one mass is
present.

Q4 FE R T S AT T T T LN T M4
Two blocks of mass 4.0 and 6.0 kg are joined by a
string and rest on a frictionless horizontal table
{see Figure 5.3). If a force of 100 N is applied
horizontally on one of the blocks, find the
acceleration of each block.

4.0k

R free-body diagrams T k2

<&
i

=

=

Lt

3 pesen 100N
: T ligirh
¥ omy l
Mg
Figure 5.3.
Answer

Method 1: The net force on the 6.0 kg mass is
100 — T and on the 4.0 kg mass just T. Thus,
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applying Newton’s second law separately on each |
Mass |

100 — T = 6a
T =4a

Solving for a (by adding the two equations side by
side) gives a =10 m s~ and the tension is thus

T=4.0=x10
=40 N

Note: The free-body diagram makes it clear that
the 100 N force acts only on the body to the right.
It is a common mistake to say that the body to the
left is also acted upon by the 100 N force.

Method 2: We may consider the two bodies as
one of mass 10 kg. This is denoted by the dotted
line in Figure 5.4. The net force on the body is
100 N. Note that the tensions are irrelevant now
since they cancel out. (They did not in Method 1
as they acted on different bodies. Now they act
on the same body. They are now internal forces
and these are irrelevant.)

100 N

15 the same as

S csmnrhe ey
:ti-u--a-----:__' ]GDN
L ] l'l llll-ﬂ-ili
"‘“"1‘II:I|- =

10.0 kg

Figure 5.4.

Applying Newton’s second law on the single
body we have

100 = 10a

=a=10ms>2,

But to find the tension we must break up the
combined body into the original two bodies.
Newton'’s second law on the 4.0 kg body gives
T=4a=40N

{the tension on this block is the net force on the
block). If we used the other block, we would see
that the net force an it is 100 = T and so

100 —T=6x10
=60

giving T = 40 N as before.

()5 PESSasssIs3ITTTTITIIPPPISASIESIFTTTITITIN
{Atwood's machine) Two masses of m= 4.0 kg
and M = 6.0 kg are joined together by a string
that passes over a pulley. The masses are held
stationary and suddenly released. What is the
acceleration of each mass{

Answer

Intuition tells us that the larger mass will start
moving downward and the small mass will go up.
So if we say that the larger mass's acceleration is
a, then the other mass's acceleration will also be
a in magnitude but, of course, in the opposite
direction. The two accelerations are the same
because the string cannot be extended.

Method 1: The forces on each mass are weight mg
and tension T on m and weight Mg and tension
T on M (see Figure 5.5).

T
L
&
r
Mg
Mg v

Figure 5.5.

Newton's second law applied to each mass states

T—mg=ma (1
Mg—T = Ma (2)

Note these equations carefully. Each says that the
net force on the mass in question is equal to that
mass times that mass’s acceleration. In the first
equation we find the net force in the upward
direction, because that is the direction of
acceleration. In the second we find the net force
downward, since that is the direction of
acceleration in that case. We want to find the
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acceleration, so we simply add up these two
equations side by side to find

Mg — mg = (m<+ M)a

hence
M—m

d= -
M+mg

{Note that if M 3 m, the acceleration tends to g
{why?).} This shows clearly that if the two masses
are equal then there is no acceleration. This is a
convenient method for measuring g: Atwood's
machine effectively ‘slows down’ g so the falling
mass has a much smaller acceleration from which
g can then be determined. Putting in the numbers
for our example we find a = 2.0 m s™%. Having
found the acceleration we may, if we wish, also
find the tension in the string, T. Putting the value
for a in formula (1) we find

M—=—m

M+ m

Mm
M+=m
=48 N

T=m B+ mg

=7

(If M 3 m, the tension tends to 2mg (why?).)

Method 2: We treat the two masses as one body
and apply Newton’s second law on this body (but
this is trickier than in the previous example) - see
Figure 5.6,

]_’_”_3_ ;

Mg

Figure 5.6.

In this case the net force is Mg — mg and, since
this force acts on a body of mass M + m, the
acceleration is found as before from F = mass x
acceleration. Note that the tension T does not
appear in this case, being now an internal force.

(06 LI rTTEs 53 1444 TR BT TR I ST ET Y
In Figure 5.7, a block of mass M is connected o a
smaller mass m through a string that goes over a
pulley. lgnoring friction, find the acceleration of
each mass and the tension in the string.

Figure 5.7.

Answer
Methad 1: The forces are shown in Figure 5.7, Thus

mg—T=ma
T = Ma

from which (adding the two equations side by side)

mg
C om+M

(If M = m the acceleration tends to zero (why?).)
If M= 8.0 kg and m= 2.0 kg, this gives
a=20ms"’, Hence

_ Mmg
T om+M
=16N

Method 2: Treating the two bodies as one results
in the situation shown in Figure 5.8.

Figure 5.8.

The net force on the mass M + m is mg. Hence

mg = (M + m)a
g B

m-+ M
The tension can then be found as before.
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()7 BEFIEIES N PN E T FI AT I SIS FETINTIAFILT
Consider finally 100 blocks each of mass m =

1.0 kg that are placed next to each other in a
straight line, as shown in Figure 5.9.

2 i 4 5
il LB ITTE {ﬂ‘f"]f':::t: ;

Hhpdbgadrdinhiailbnsn -
| ML A R T Y I Y
w4 -

ey
i A T rae

--------

A force F = 100 N is applied to the block at the
left. What force does the 60th block exert on the
61st (see Figure 5.10)

detsippasieatisield
free-body diagram W S
for the last 40 —. |
bIDCL.'S .............
Figure 5.10.
Answer

To answer the question, we treat the 100 blocks as
one body, in which case the net force on the
systemn is 100 N. Since the mass is 100 kg, the
acceleration of each block is 1 ms™,

Let T be the required force. It is the net force on
the body inside the dotted line of mass 40 kg.
Since this force accelerates a mass of 40 kg by
Ims 2 T=ma=40N.

Terminal velocity

When a body moves through a fluid (a gas or
liquid), it experiences an opposing force that
depends on the speed of the body. If the speed is
small, the opposing force is proportional to the
speed, whereas for larger speeds the force
becomes proportional to the square of the speed.
Consider, for example, a body falling through air.
The forces on the body are its weight, myg, and the
opposing force, which we assume is proportional
to the speed, F =kv. Initially the speed is small,
so the body falls with an acceleration that is
essentially that due to gravity. As the speed
increases, so does the opposing force and hence,
after a while, it will become equal to the weight.

In that case the acceleration becomes zero and
the body continues to fall with a constant velocity,
called terminal velocity. Figure 5.11 shows a

body falling from rest and acquiring a

terminal velocity of 50 m s~ after about 25 s. The
acceleration of the body is initially that due to
gravity but becomes zero after about 25 5.

rﬂg:klﬁ = Vr=nTy

kv

» increasing velocity

wm s

b

! L - . L 1%
0 5 10 15 20 25 30
Figure 5.11 The opposing force grows as the speed
increases and eventually becomes equal to the
weight, From that point on, the acceleration is
zero and the body has achieved its terminal
velocity.
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The inclined plane

The motion of a body along a straight line that
is kept at an angle to the horizontal (inclined
plane) is an important application of Newton's
laws. The following is an example. A mass of
m = 2.0 kg is held on a frictionless inclined
plane of 30°. What is the acceleration of the
mass if it is released?

There are two forces acting on the mass (see
Figure 5.12).

mg
]

Figure 5.12 A mass on an inclined plane,

The two forces are: its weight vertically down of
magnitude mg, and the reaction from the plane,
which is perpendicular to the plane, of magnitude
R.We can find the components of these two forces
along two mutually perpendicular axes, one being
along the plane (see Figure 5.13). The force R is
already along one of the axes so we don't bother
with that. But mg is not.

g sin £

mg

Figure 5.13 We take components along axes that
lie along the plane and normally to the plane.

The magnitude of the component of mg along
the plane is mg sin&, where # = 30° is the angle
of the incline. This component lies down the
plane. The other component is mg cosé, in the
direction perpendicular to the plane. In that

direction there is no acceleration, hence the net
force there is zero: that is, R —mg cos# = (.
This tells us that R = mg cosé. In the direction
along the plane, there is a single unbalanced
force, namely mg sin #, and therefore by Newton's
second law, this force will equal mass times
acceleration in that same direction: that is

mg siné = ma

where a is the unknown acceleration. Hence,
we find

0 =g sing

This is an important result and we will make
use of it many times. Note that the acceleration
does not depend on the mass. For the numerical
values of this problem we finda = 50m s ™%

You may wonder why we took as our axes the
ones along and perpendicular to the inclined
plane. The answer is that we did not have to
choose these axes. Any other set would have
done, This choice, however, is the most
convenient, because it exploits the fact that the
acceleration will take place along the plane, so
we choose that direction as one of our axes. If
we had chosen another set of axes, say a
horizontal and a vertical one, then we would
find acceleration along both of these axes.
Acceleration, of course, is a vector and if we
combined these two accelerations, we would
find the same acceleration (in magnitude and
direction) as above. Try to work out the details.

An accelerometer

Consider a mass that is hanging from a string of
length [, which is attached to the ceiling of a
train. What will be the angle the string makes
with the vertical if (a) the train moves forward
with a constant speed of 3 m s ', or (b) moves
forward with an acceleration of 4 m s™*? If the
train moves with constant speed in the
horizontal direction, the acceleration in this
direction is zero. Hence the net force in the
horizontal direction must also be zero, The only
forces on the mass are its weight vertically
down, and the tension T of the string along the
string. So, to produce zero force in the horizontal
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direction the string must be vertical. In case (b}
there is acceleration in the horizontal direction
and hence there must also be a net force in this
direction. The string will therefore make an
angle & with the vertical (see Figure 5.14).

acceleration | |

Figure 5.14 When the forces are not in the
direction of acceleration, we must take
components,

In this case we take components of the forces
on the mass along the horizontal and vertical
directions. In the horizontal direction we have
only the component of T, which is T sin#, and
in the vertical direction we have T cos# upward
and mg downward. Therefore

Tsind=ma and T cosé =myg

Hence, a = g lan . Note that the mass does not
enter into the expression for a. This is actually a
crude device that can be used to measure
acceleration — an accelerometer.,

Newton’s third law

Newton's third law states that:

» [ body A exerts a force Fon body B, then
bodgﬂ,wlsanequalmmnppnmﬁ:ﬁm b
o body A. (Sec Figare 515

A
B

—&

@—»

Figure 5.15 The two bodies exert equal and
opposite forces on each other..

Make sure you understand that these equal and
opposite forces act on different bodies. Thus, you
cannot use this law to claim that it is impossible
to ever have a net force on a body because for
every force on it there is also an equal and opposite
force. Here are a few examples of this law:

* You stand on rollerskates facing a wall. You push
on the wall and you move away from it. This is
because you exerted a force on the wall and in
turn the wall exerted an equal and opposite
force on you, making you accelerate away.

* You are about to step off a boat onto the dock.
Your foot exerts a force on the dock, and in
turn the dock exerts a force on you (your foot)
in the opposite direction making you (and the
boat) move away from the dock. (You probably
fall in the water!)

* A helicopter hovers in air. Its rotors exert a
force downward on the air. Thus, the air exerts
the upward force on the helicopter that keeps
it from falling.

* A book of mass 2 kg is allowed to fall freely. The
earth exerts a force on the book, namely the
weight of the book of about 20 N, Thus, the
book exerts an equal and opposite force on the
earth - a force upward equal to 20 N.

Be careful with situations where two forces are
equal and opposite but have nothing to do with
the third law. For example, a block of mass 3 kg
resting on a horizontal table has two forces
acting on it. Its weight of 30 N and the reaction
from the table that is also 30 M. These two forces
are equal and opposite, but they are acting on
the same body and so have nothing to do with
Newton's third law. (We have seen in the last
bullet point above the force that pairs with the
weight of the block. The one that pairs with the
reaction force is a downward force on the table.)

Newton's third law also applies to cases where
the force between two bodies acts at a distance:
that is, the two bodies are separated by a
certain distance. For example, two electric
charges will exert an electric force on each
other and any two masses will attract each
other with the gravitational force. These forces
must be equal and opposite. (See Figure 5.16.)
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Figure 5.16 The two charges and the two masses are
different but the forces are equal and opposite.

Questions

{a) Under what circumstances would a
constant force result in an increasing
acceleration on a body?

(b} Under what circumstances would a constant
force result in zero acceleration on a body?

A car of mass 1354 kg finds itself on a muddy
road. If the force from the engine pushing the
car forward exceeds 575 N, the wheels slip
(i.e. they rotate without rolling). What is the
maximum acceleration that the car can move
with on this road?

The net force on a mass of 1.00 kg initially at
rest is 1.00 N and acts for 1.00 s, What will
the velocity of the mass be at the end of the
1.00 s interval of time?

A mass of 2,00 kg is acted upon by two forces
of 4.00 N and 10.0 N. What is the smallest
and largest acceleration these two forces can
produce on the mass?

A man of mass m stands in an elevator. Find

the reaction force from the elevator floor on

the man when:

(a) the elevator is standing still;

{b) the elevator moves up at constant speed v;

{c) the elevator accelerates down with
acceleration a;

(d) the elevator accelerates down with
acceleration a = g.

(e) What happens when a > g?

A bird is in a glass cage that hangs from a
spring scale. Compare the readings of the
scale in the following cases.

{a) The bird is sitting in the cage.

{b) The bird is hovering in the cage.

{c) The bird is moving upward with
acceleration.

(d) The bird is accelerating downward.

(e} The bird is moving upward with constant
velocity.

Get in an elevator and stretch out your arm
holding your heavy physics book. Press the
button to go up. What do you observe
happening to your stretched arm? What
happens as the elevator comes to a stop at the
top floor? What happens when you press the
button to go down and what happens when the
elevator again stops? Explain your observations
carefully using the second law of mechanics.

A block of mass 2.0 kg rests on top of another
block of mass 10.0 kg that itself rests on a
frictionless table (see Figure 5.17). The largest
frictional force that can develop between the
two blocks is 16 M. Calculate the largest force
with which the bottorn block can be pulled so
that both blocks move together without sliding
on each other.

2.0kg

10.0 kg -
—

Figure 5.17 For question &.

Figure 5.18 shows a person in an elevator
pulling on a rope that goes over a pulley and is
attached to the top of the elevator. Identify all
the forces shown and for each find the reaction
force (according to Newton's third law). On
what body does each reaction force act?

Figure 5.18 For questions 9 and 10.
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10

1

12

13

14

15

16

Take the mass of the elevator shown in

Figure 5.18 to be 30.0 kg and that of the
person to be 70.0 kg, If the elevator accelerates
upwards at 0.500 m s, find the reaction force
on the person from the elevator floor.

A small passenger car and a fully loaded truck
collide head-on. Which vehicle experiences
the greater force?

What force does a man of mass 80.0 kg exert
on the earth as he falls freely after jumping
from a table 1 m high from the surface of the
earth?

Three blocks rest on a horizontal frictionless
surface, as shown in Figure 5.19. A force of
20.0 N is applied horizontally to the right on
the block of mass 2.0 kg. Find the individual
forces acting on each mass. Identify
action—reaction pairs.

30kg

20kg 50kg

—»

Figure 5.19 For question 13.

A (massless) string hangs vertically from a
support in the ceiling. A mass of 10.0 kg is
attached to the other end of the string. YWhat is
the force the string exerts on the support?

A block of mass 15.0 kg rests on a horizontal
table. A force of 50.0 N is applied vertically

downward on the block, Calculate the force

that the block exerts on the table.

A block of mass 10.0 kg rests on top of a
bigger block of mass 20.0 kg, which in turn
rests on a horizontal table (see Figure 5.20).
Find the individual forces acling on each
block. Identify action-reaction pairs according
to Newton's third law.

10,0 kg

200kg

Figure 5.20 For question 16.

17

18

19

20

21

22

23

If a vertical downward force of 50.0 N acts on
the top block in Figure 5.20, what are the
forces on each block now.

A massless string has the same tension
throughout its length. Can you explain why?

Look back at Figure 5.18. The person has a

mass of 70.0 kg and the elevator a mass of

30.0 kg. If the force the person exerts on the

elevator floor is 300.0 N, find the acceleration

of the elevator (g = 10 ms™7).

{a) Calculate the tension in the string joining
the two masses in Figure 5.21.

(b) Ii the position of the masses is
interchanged, will the tension change?

30.0 kg

100 kg

5

Figure 5.21 For question 20.

F=600N

One hundred equal masses m= 1.0 kg are
joined by strings as shown in Figure 5.22. The
first mass is acted upon by a force F = 100 M.
What is the tension in the string joining the
60th mass to the 61st?

Figure 5.22 For question 21.

A mass of 3.0 kg is acted upon by three forces
of 40N, 6.0 N and 9.0 N and is in
equilibrium. Convince yourself that these
forces can indeed be in equilibrium. If the
9.0 N force is suddenly removed, what will
the acceleration of the mass be?

What is the tension in the string joining the
two masses in Figure 5.237 What is the
acceleration of each mass?

100k 20ky

—— F= 4N

Figure 5.23.
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24 Two bodies are joined by a string and are pulled
up an inclined plane that makes an angle of
307 to the horizontal, as shown in Figure 5.24.
Calculate the tension in the string when:

(a) the bodies move with constant speed;
{b) the bodies move up the plane with an
acceleration of 2.0 ms™.

ic) What is the value of Fin each case?

Figure 5.24 For question 24.

25 The velocity-time graph in Figure 5.25 is a
student’s graph for the vertical motion of a
person who jumps from a helicopter and a
few seconds later opens a parachute.

(a) Using the laws of mechanics carefully
explain the shape of the curve. (When
does the parachute open? When does the
air resistance force reach its maximum
value? Is the air resistance force constant?)

(b} How would you improve on the student’s
graph?

Figure 5.25 For question 25.




GHAPTER

Linear momentum

This chapter introduces the concept of momentum and, by using Newton's second and
third laws, the law of momentum conservation is derived. This law is the basis for
analysing collisions.

 Objectives

By the end of this chapter you'should be able to:

+ state the definition of momentum (j = mv) and appreciate that
momentum is a vector quantity;

+ state the definition of average net force in terms of momentum, F . = ‘3‘—,",—’

+ state the definition of impulse as the change in momentum and
understand that the area under a force-time graph is the impulse of the
force;

* derive the law of conservation of momentum using Newton's second and
third laws;

* identify situations in which momentum is conserved and solve related
problems.

| If the mass of the body is constant, this reduces
'he {ontept Of mﬂmentum | to the familiar Fnel = mi. This is because in that
Momentum is a very important and useful E rase
concept in mechanics. |
h.:ﬂ::mnmentmafa homnfmaﬁmw—__ Fret = %
_mﬁmmmm HiRagHE Z; g — i
Sperye i;.;._-._af;_:_--:; | S

~~Mon ity whose | PR ()
: '-;-ﬁmﬁutnmesameuthfafafﬂm»ﬂmaf i Al
3_1..mmmmmtmmkgmw | =m&—ﬁ
: :f'qu?'?ﬂ&"ﬂ;::ﬁ:;:.;.._ Xp ..'.;.‘ | Al

In terms of momentum, Newton's second law of

mechanics can be stated as The advantage of the formulation of Newton's

second law in terms of momentum is that it
can be used also in cases where the mass of the
body is changing (such as, for example, in the
motion of a rocket).

Sty
Foe = 7

that is, the (average) net force on a body equals
the rate of change of the body's momentum.
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Example questions

Q] SRR TSRS R TITITIT TP TTo T
A 0.100 kg ball moving at 5 m s~' bounces off

a vertical wall without a change in its speed (see
Figure 6.1). If the collision with the wall lasted for
0.1 5, what force was exerted on the wall?

I
b . ball coming in
. ball bounces back
Figure 6.1.
Answer

The momentum of the ball changed from —0.5 N s
to 0.5 N s in 0.1 s (note the signs: momentum is a
vector). The magnitude of the average force on
the ball is thus
” Ap
| Foeel = At
0.5 —(—-0.5)Ns
- 0.1s

= 10N

This is also the force exerted by the ball on the
wall by Newton's third law.

(7 T IS S TN S S NS TFEE
A 0.50 kg ball bounces vertically off a hard
surface. A graph of velocity versus time is shown
in Figure 6.2, Find the magnitude of the
momentum change of the ball during the
bounce. The ball stayed in contact with floor for
0.15 5. What average force did the ball exert on
the floor?

=
atims

“ \ reaction force

1
e
-

weight

Answer

The initial momentum is 0.50 ¥ 4 = 2 N s. The
final is 0.50 X (=2) = =1 N s, The magnitude of
the change is therefore 3 N s. The forces on the
ball during contact are its weight and the reaction
from the floor. Thus

| Foetl = R — mg
_|ap
Y
_ 30N
T 0.155%
= 20N

S0

R=2045

=25 N

()} AT T IEIe IR e S 0 R IS LI EET TN T
Bullets of mass 30 g are being fired from a gun
with a speed of 300 m s ™' at a rate of 20 per
second. What force is being exerted on the gun?

Answer

Using the definition of force involving rate of
change of momentumn as above, we see that the
momentum of one bullet changes from zero
before it is fired to mv after it has been fired. If
there are AN bullets being fired in time At, then
the magnitude of the momentum change per
second is

A

ap: AN

Al At
=205" x 0.030 kg x 300 ms™"
= 180 N

Q4 s T T T I e S S A S T
Mass falls at a rate of u kg s™' onto a conveyor belt
which moves at constant speed v (see Figure 6.3).
What force must be exerted on the belt to make it
turn at constant speed?
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Answer

The horizontal momentum of the falling mass
increases from zera when it first hits the belt to
mv. The rate of increase of momentum is thus pv
and this is the force on the belt, F = pv.

() IO O O LT O L T
A helicopter rotor whose length is R = 5.0 m
pushes air downwards with a speed v. Assuming
that the density of air is constant at p = 1.20 kg m
and the mass of the helicopter is 1200 kg, find v.
You may assume that the rotor forces the air in a
circle of radius R (spanned by the rotor) to move
with the downward speed v.

Answer

The momentum of the air under the rotor is mv,
where m is the mass of air in a circle of radius
5.0 m. In time Af the mass is enclosed in a
cylinder of radius R and height vat. Thus, the
momentum of this mass is prR v AL and its rate
of change is prR*v?. This is the upward force on
the helicopter, which must equal the helicopter’s
weight of 12 000 N. So

prR*V = Mg
Mg

[
= V=0 ———

¥ o R?

Thus, v=11ms"'.

Impulse

Newton's second law, in terms of momentum
change, states that the average net force on a
body (here we use magnitudes of forces and
momenta) is given by
= A
i P

et = E
If Al is infinitesimally small, this gives the
instantaneous force on the body. If not, it gives
the average force on the body, F . We may then
write

Ap = FAl

Figure 6.4 shows a ball in contact with a tennis
racket. The magnitude of the impulse delivered

to the ball is Ap and equals the product of the
magnitude of the average force on the ball times
the interval of time for which the contact lasts.

Figure 6.4 The momentum of the ball changes as a
result of the collision with the tennis racket.
This means there is a force on the ball while it
is in contact with the racket,

The quantity Ap = FAI is called the impulse of
the force and has the following interpretation

in terms of a graph that shows the variation of
the force with time (see Figure 6.5).

» Impulse is the area under the curve of a
force-time graph and equals the total
momentum change of the mass.

G000

400

apg 4o

i i e TiMIE NS

0 2 4 f B 10

Figure 6.5 The area under the force-time graph
gives the total momentum change of the body
the force acts upon.

whad admdes la..l-n.l.- [ ey

In the graph of Figure 6.5 the area is about

2.5 N 5 (can you verify this?) and the force acts
for about 6.0 ms. This means that during the
6.0 ms the momentum of the body changed by
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2.5 N 5. The maximum force that acted on the
body was 1000 N and the average force

i
<

25
T 6.0x 107
~ 470N

Consider, then, a body of mass m that mowves
with velocity v and is brought to rest by a non-
constant force F. The change in the momentum
of the body is Ap =0 —mv = —mv. (We may
ignore the sign if we are interested only in the
magnitude of the momentum change.) Let us
examine two possibilities. In the first case, the
force brings the body to rest over a longer
period of time compared with the second. The
graphs of force versus time might be as shown
in Figure 6.6. The thick curve represents the
force that brings the body to rest over a short
time, This force is larger, on average, than the
force that brings the body to rest over a longer
time interval. The areas under the curves are
the same since they both represent the change
in the momentum of the body, which is mv in
both cases.

force

-
L

tme

Figure 6.6 The areas under the two curves are the
same so the force acting for a shorter time must
be larger on average.

These graphs can be thought of as idealizations
of the forces experienced by a driver of a car
that is brought suddenly to rest in a crash.
(What are more realistic graphs?) A driver not
wearing a safety belt will quickly come to rest
after hitting the steering wheel or the

windscreen and will experience a large force. A
driver wearing a safety belt in a car with an air-
bag, however, will come to rest over a longer
period of time since the belt and the air-bag
start bringing him to rest earlier and allow him
to move forward a bit while coming to rest. The
force he experiences is thus correspondingly
smaller,

Example questions

Qi R T TIPS MR R S T ]
A ball of mass 0.250 kg moves on a frictionless
horizontal floor and hits a vertical wall with

speed 5.0 m 57!, The ball rebounds with speed
4.0 m s~ ', If the ball was in contact with the wall
for 0.150 s, find the average force that acted on
the ball.

Answer

The magnitude of the change in the ball's
momentum is (remember that momentum is a
vector)
Ap=p—p
= 0.250 x 4.0 = (—=0.250 = 5.0)
= 1.0 = (=1.25)
=2.25Ns

Hence

o ;,‘:o,p
F=2ar

2.25Ns
0.1505

=15N

07 s RN e I Y E P ek re 3
The force in example question 6 is assumed to
vary with time as shown in Figure 6.7,

Deduce the maximum force that acted on the ball.

0.150 5
Figure 6.7.
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A second, harder, ball of identical mass to the first
also bounces off the wall with the same initial and
final speed, but since it is harder it stays in contact
with the wall for only 0.125 s. What is the
maximum force exerted by the wall on this ball?

Answer

The area under the curve is the total change in
the ball’s momentum, which we found to be
Ap= 2.25Ns. The area is a triangle and so

1 X Frnax % 0.150 = 2.25

=% Fmax = 30N

The area under the force-time graph in the case
of the harder ball will be the same. Thus

% ¥ Frnax x 0,125 = 2.25
=% Frax = 36N

Of AN C R T T TESIB AT SR LTSI 5T
A force of 1000.0 N acts on a bady of 40.0 kg
initially at rest for a time interval of 0.0500 s.
What is the velocity of the mass?

Answer
The impulse is
FAL=1000 x 0.05Ns

Answer

The block will leave the table when the normal
reaction force K becomes zero.

R+ Fsin30° = mg
50
F= 40 N when R = 0.

This happens when t = 3.0 s. The horizontal
component of Fis

(44 12t)cos 30" = 3.64 + 10.39¢

The change in the body's momentum in the
horizontal direction is the area under the F, versus
t graph from t = 0 to t = 3.0 s. This area is

57.7 N 's. Thus, the horizontal component of
velocity is 28.8 m s~'. The vertical component

Is Zero.

The law of conservation
of momentum

Given a system of two masses say m; and mz
with velocities ¥, and ¥, the total momentum
of the system is defined as the vector sum of
the individual momenta

= 50.0Ns

and this equals the amount by which the body’s
momentum increases. The velocity is thus
. .

=1 =1
—ms = 1.25ms
40

Piow = n¥y + mavs

Example questions

Q10 R IEIT I I I T L FRESSERELT ESEREL I TTD
Two masses of 2.0 kg and 3.0 kg move to the
right with speeds of 4.0 ms™" and 5.0 ms™,
respectively. What is the total momentum of

the system?

QUIE c53i csas i TTIT S VETTRPOPPERRRLISSS S SOTEEY
A force F varies with time according to F =

4 + 121, where Fis in newtons and  in secands.
The force acts on a block of mass m = 2.00 kg,
which is initially at rest on a frictionless
horizontal surface. F makes an angle of 30° with
the horizontal (see Figure 6.8). When will the
force lift the body from the table? What will the
velocity of the body be at that instant?

Answer

P=(2x443x5)1Ns
=23 Ns

Q1] IO PR TN F TSI T T T I FETAN N
A mass of 2.0 kg moves to the right with a speed
30° of 10.0 m s~' and a mass of 4.0 kg moves to the
left with a speed of 8.0 m s~'. What is the total
momentum of the system?

Figure 6.8,
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Answer
P=(2=x10—4 % 8)Ns
=—12Ns

The minus sign means that the direction of this
total momentum is to the left.

Consider now two bodies A and B of masses m,
and my on a horizontal frictionless table. The
forces on each mass are the weight and the
normal reaction force from the table, which
equals the weight. Thus, the net force on each
mass is zero. If these masses have some initial
velocity, then by Newton's first law they continue
moving with that same velocity until a force acts
on them. If the bodies move in such a way that
they will collide at some point in time, then at
the point of collision a force will be exerted on
each body. As a result of this force, each mass will
change its velocity and thus its momentum. If we
consider the two bodies together as a system,
then the net force on the system is zero. As we
mentioned already, the weight of each mass is
cancelled by the reaction force and the only force
that remains is the force during the collision.
However, from Newton's third law, the force that
body A experiences must be equal and opposite to
that which B experiences. Thus, even though
there is a net force acting on each mass for the
duration of the collision, the net force on the
system of the two masses is zero. We see that at all
times the net external force on the system is zero.
(See Figure 6.9.)

00 00"

no forces act on the
system from outside

system

o

Figure 6.9 The total momentum of an isolated
system is conserved,

A system in which no external forces act is
called an isolated system. Isclated systems have
the property that the total momentum stays the
same at all times. If the system consists of a
number of bodies (in our example, two) then
the total momentum is defined as the sum of
the individual momenta of the bodies in the
system. If, before the collision, the bodies A and
B had velocity vectors ¥4 and ¥g, then the total
momentum of the system is

Piotal = MaVa + mgiyg

We should remind ourselves that momentum is
a vector and thus when we say that the total
momentum is the sum of the individual
momenta we mean ﬂ'IE vector sum.

If, as a result of the collision, the two bodies
now have velocity vectors iy and g, then the
total momentum is now

Prota = Maliy + mgliy

and equals the total momentum before the
collision. The individual momenta have
changed as a result of the collision but their
vector sum is the same. This is the law of
conservation of linear momentum.

pwhmmmctﬁnalmw masjm}ﬁy*?

 the total momentum of the system stays
thnsame].---.______________:::_._'

roray bRy
------r-n..
z kia s = = - == x: 2y —rYEe,

Example questions

()12 EIrr s DI T A PSSR
Let a mass of 3.0 kg be standing still and a second
mass of 5.0 kg come along and hit it with velocity
4.0 m s, Suppose that the smaller mass moves
off with a speed of 3.0 m s~'. What happens to
the larger mass? (See Figure 6.10.)

Answer

The system of the two masses is an isolated system
as we discussed above. Thus, momentum will be
conserved. Before the collision the total momentum
of the system was (3.0 X 0 + 5.0 X 40)Ns =

20 N s. This must also be the total momentum
after the collision. But after the collision the total
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hefore collision
50kg 30 ke

after collision

O o

Figure 6.10.

momentum is (3.0 X 3.0 + 5.0 % u) N s where
u is the unknown speed of the larger mass. Thus
20=9.0+50uandsou=22ms"".

013 SO TS S e A e S T T
Two masses of 2.0 kg and 4.0 kg are held with a
compressed spring between them. If the masses
are released, the spring will push them away from
each other. If the smaller mass moves off with a
speed of 6.0 m s™', what is the speed of the other
mass? (See Figure 6.11.)

g before

after

20 kg
6.0 m s

Answer

Here our system consists of the two masses and
the spring. There are no external forces here,
since gravity is cancelled by the upward
reaction forces from the table where the masses
rest. The only force is the elastic force of the
spring with which it pushes the masses away.
But this is not an external force so total
momentum will stay the same. The spring exerts
equal and opposite forces on each mass. Before
the masses start moving apart, the total
momentum is zero, since nothing moves. After
the masses move away, the total momentum is

(2 x6—4xu Ns, where uis the unknown
speed of the heavy mass. Note the minus sign.
The masses are moving in opposite directions,
so one of the velocities (and also one of the
momenta) is negative. Thus, 12 — 4u = 0 and

sou=30ms".

O} O T RS N EITTT T SIS
A ball is released from some height above the
earth’s surface. Treat the ball as the entire system
under consideration. As the ball falls, is the
momentum of the system conserved?

Answer

No, because there is an external force acting on
the ball, namely its weight.

Q15 P EI I NN T S YIS
A ball is released from some height above the
earth’s surface. Treat the ball and the earth as
the entire system under consideration. As the
ball falls, is the momentum of the system
conserved?

Answer

Yes, because there are no external forces on the
system. The earth exerts a force on the ball but
the ball exerts an equal and opposite force on the
earth. Hence the net force on the earth-ball
system is zero.

{This means that as the ball falls, the earth moves
up a bit!)

Proof of momentum
conservation

We will now prove the law of momentum
conservation for an isolated system consisting
of two bodies A and B. It is easy to generalize to
systems with more than two bodies. Let the two
bodies have masses n, and my, with velocities
before the collision ¥; and ¥,. As a result of the
collision the two bodies change their velocities
to ii, and iip. Let F stand for the force that A
experiences during the collision, which lasted a
time Al. (See Figure 6.12.)
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hefore collision

after collision

o O

Figure 6.12 Diagram used for proof of the law of
conservation of momentum.

Then, by Newton's second law
Ap,
Al
Miatly — Ma¥s
Al _
The force experienced by B is —F [Newton’s
third law) and so

P

= AD
e OPE
Al
Mty — MyVy
N Al
Thus
Mally — MyVy = —(mpUy, — myVy,)

= Ma¥y + My = Myliy + myliy,

which states precisely that the total momentum
before and after the collision is the same,

Example questions

6 RS TP VYT SN SN RF VT 5 1T

{a) A man of mass m stands on a cart of mass M
that rests on a horizontal frictionless surface. If

the man begins to walk with velocity v with
respect to the cart, how will the cart move?
See Figure 6.13.

(b) What happens when the man gets to the edge
of the cart and stops walking?

Answer

(@) Let us look at things from the point of view of
an observer at rest on the ground. The initial
momentum of the man—cart system is zero.
The cart will move to the left with speed u, so
the man will move with velocity v — u with
respect to the ground. Hence, by momentum
conservation
0=m(v—u) - Mu

mv
M+m

= U=

(b} When the man stops, the cart will stop as well,
so the total momentum of the man—cart system
remains zero.

Q17 TSR U R T TS TN E LS ST AT
A cart of mass M moves with constant velocity v
on a frictionless road (see Figure 6.14). Rain is
falling vertically on to the road and begins to fill
the cart at a steady rate of u kg per second. Find
the velocity of the cart t seconds later.

Figure 6.14.

Answer

We look at things from the point of view of an
observer on the ground. After a time of s the
mass of the cart is M 4 pt. Momentum is
conserved as there are no external forces, So if v
is the velocity after time t, we must have
My = (M4 pthu
M
M4

= U=

v

HL only

Q18 PRI TR T R R
A cart of mass M is filled with water and moves
with velocity v on a frictionless road. Water
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begins to leak from a small hole in the base of
the cart and falls out at a rate of u kg per
second. (See Figure 6.15.) What happens ta the
velocity of the cart?

We look at things from the point’of view of an
abserver on the ground and take as our system
the cart plus all the water (including that which is
falling out). The falling water still moves with
the same velocity to the right as far as the

ground observer is concerned, and since there are

no external forces, momentum is conserved and
there can be no change of velocity.

We can also get the same answer if we take as

our system the cart and the water inside the cart.

As far as the ground observer is concerned, the

waler leaves the cart with a horizontal velocity v

to the right. Thus, there is a force on the carnt
directed to the left of magnitude pv. Hence, the
observer deduces thal, since nel force = rate of
change of momentum,

M Av
MRS N
=—;.!.V+ME
8t

= dv=0

Two-dimensional collisions

Consider a stationary body of mass 12 kg
that is hit by a 4.0 kg mass moving at

12 m s~ '. The collision is not head-on, and
the bodies move at an angle to the original
direction of motion of the 4.0 kg body as
shown in Figure 6.16 (the view is from the
top). How can we find the speeds of the two
bodies after the collision?

Figure 6.16.

Momentum is a vector and is conserved. This
means that
x-component of total momentum before
= x-component of total momentum after

y-component of total momentum before
= y-component of total momentum after

Thus

4% 12=4 xvcosbl" + 12 x ucos30°

0=4xvsin6l” — 12 = usin30°

and so

2xy 410392 xu =48

3464 xv—6xu=>0
Solving simultaneously gives

v=60ms"

u=35ms".

Questions

1 The momentum of a ball increased by 12.0 N s
as a result of a force that acted on the ball for
2.00 s. What was the average force on the ball?

2 A 0.150 kg ball moving horizontally at
3.00 m s~ collides normally with a vertical
wall and bounces back with the same speed.
fa) What is the impulse delivered to the ball?
{b} 1f the ball was in contact with the wall for
0.125 s, find the average force exerted by
the ball on the wall.

3 The baodies in Figure 6.17 suffer a head-on
collision and stick to each other afterwards.
Find their commaon velocity.

Figure 6.17 For question 3.

=
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4 Two masses of 2.00 kg and 4.00 kg are kept on
a frictionless horizontal table with a
compressed spring between them, If the
masses are released, the larger mass moves
away with velocity 3.50 m s™'. What is the
velocity of the other mass?

5 A 70.0 kg person stands at the back of a
200.0 kg boat of length 4.00 m that floats on
stationary water. She begins to walk toward the
front of the boat. When she gets to the front,
how far back will the boat have moved?
(Neglect the resistance of the water.)

6 A ball of mass 250 g rolling on a horizontal
floor with a speed 4.00 m s~ hits a wall and
bounces with the same speed, as shown in
Figure 6.18.

(a) What is the magnitude and direction of the
momentum change of the ball?

(b) Is momentum conserved here? Why or why
not?

Figure 6.18 For question 6,

7 A mass of 0.500 kg moving at 6.00 ms™’
strikes a wall normally and bounces back with
a speed of 4.00 m s~', If the mass was in
contact with the wall for 0.200 s find:
(a) the change of momentum of the mass;
(b) the average force the wall exerted on the
mass.

8 A person holds a book stationary in his hand
and then releases it.
{a) As the book falls, is its momentum
conserved?
(b} What does the law of conservation of
momentum say for this example?

9 A binary star system consists of two stars that
are orbiting a common centre, as shown in
Figure 6.19. The only force acting on the stars
is the gravitational force of attraction in a
direction along the line joining the stars.

{a) Explain carefully why the total momentum
of the binary star is constant.

Figure 6.19 For question 9.

(b) Explain why the two stars are always in
diametrically opposite positions.

{c) Hence explain why the two stars have a
common period of rotation and why the
inner star is the more massive of the two.

10 (a) A fan on a floating barge blows air at high
speed toward the right, as shown in Figure
6.20a. Will the barge move? Explain your
answer.

{b) A sail is now put up on the barge so that
the fan blows air toward the sail, as shown
in Figure 6.20b. Will the barge move?
Explain your answer.

fan

(a) (b)
Figure 6.20 For question 10.

11 If you jump from a height of 1.0 m from the
surface of the earth, the earth actually moves
up a bit as you fall.

{a) Explain why.

{b) Estimate the distance the earth moves,
listing any assumptions you make.

{c) Would the earth move more, less or the
same if a heavier person jumps?

12 Atime-varying force whose graph versus time
is shown in Figure 6.21 acts on a body of
mass 3.00 kg.

{a) Find the impulse of the force.

(b) Find the velocity of the mass at 17 s,
assuming the initial velocity was zero.

(c) What should the initial velocity be if the
mass had to stop at 17 s?
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FIN &

5 12 17 s
Figure 6.21 For question 12.

13 A rocket in space where gravity is negligible has
a mass (including fuel) of 5000 kg. If it is desired
to give the rocket an average acceleration of
15.0 m s~ during the first second of firing the
engine and the gases leave the rocket at a speed
of 1500 m s~ (relative to the rocket), how
much fuel must be bumed in that second?

14 Two masses moving in a straight line towards
each other collide as shown in Figure 6.22.
Find the velocity (magnitude and direction) of
the larger mass after the collision.

before after

40kg 12.0 kg
or @ 0 @
240mst  20ms! 3.0m 5= v="

Figure 6.22 For question 14.

15 Two cars of masses 1200 kg and 1400 kg collide
head-on and stick to each other. The cars are
coming at each other from opposite directions
with speeds of 8.0m s 'and 6 ms™,
respectively. With what velocity does the wreck
move away from the scene of the accident?

16 A 0.350 kg mass is approaching a moving rod
with speed 8.00 m s™'. The ball leaves the rod
at right angles with a speed of 12.0 m s as
shown in Figure 6.23. What impulse has been
imparted to the ball?

12.0ms" |L

Figure 6.23 For question 16.

17 Two cars A and B of mass 1200 kg and
1300 kg, respectively, collide at an
intersection and stick to each other as a result
of the collision as shown in Figure 6.24. Find
the speeds of A and B before the collision.

¥ ; ‘.iﬂmri

Figure 6.24 For question 17.

18 A boy rides on a scooter pushing on the road
with one foot with a horizontal force that
depends on time, as shown in the graph in
Figure 6.25. While the scooter rolls, a constant
force of 25 N opposes the motion. The
combined mass of the boy and scooter is
25 kg.

(a) Find the speed of the boy after 4.0 s,
assuming he started from rest.

(b) Draw a graph to represent the variation of
the boy's speed with time.

T T T*
0 05 10 1.5 20 25 30 35 4.0

s

Figure 6.25 For question 18.

HL only

19 A student stands on a plate that is connected
to a force sensor that measures the force
exerted by the student on the plate. The
student then jumps straight up. Figure 6.26
is an idealized version of the reading of the
sensor as a function of time. Using this graph
find the following:



98 Core - Mechanics
.

(a) the mass of the student;

(b) the acceleration of the student at 0.6 s5;

{c} the time the student leaves the plate;

(d) the maximum height the student jumps to.

(e} What would be a more realistic graph of
force versus time?
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Figure 6.26 For question 19,

20 A ball of mass m is dropped from a height of
hy and rebounds to a height of hy. The ball is
in contact with the floor for a time interval
of r.

{a) Show that the average net force on the
ball is given by

" V2ghy + 2gh;

4

F =

tb) iy =8.0m, h =6.0m, t =0.125 s,
m= 0.250 kg, calculate the average force
exerted by the ball on the floor.

21 A ball of mass m hits a horizontal floor
normally with speed v, and rebounds with
speed va. The ball stayed in contact with the
floor for a time of r s. Show that the average
force on the ball from the floor during the
collision is given by 5252 4 mg. Find an

expression for the average net force on the ball.

22 Figure 6.27 shows the variation with time of
the force exerted on a body of mass 4.0 kg
that is initially at rest. Find:

{a) the acceleration of the mass at 4 s;
(b} the velocity of the mass at 5 5;

{c) the acceleration of the mass at 8 s;
{d) the velocity of the mass at 10 s.

0 2 4 f B 10
Figure 6.27 For question 22.

23 You have a mass of 60.0 kg and are floating
weightless in space. You are carrying 100 coins
each of mass 0.10 kg.

(a) If you throw all the coins at once with a
speed of 5.0 m s~ in the same direction,
with what velocity will you recoil?

(b} If instead you throw the coins one at a
time with a speed of 5.0 m s~ with
respect to you, discuss whether your final
speed will be different from before. (Use
your graphics display calculator to
calculate the speed in this case.)

24 Figure 6.28 shows the variation with time of the
force exerted on a ball as the ball came into
contact with a spring.

(a) For how long was the spring in contact with
the ball?

(b) Estimate the magnitude of the change in
momentum of the ball.

{e) What was the average force that was exerted
on the ball?

FiN
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Figure 6.28 For question 24,

"



CHAPTER pAL

Work, energy and power

The topic of mechanics continues in this chapter with the fundamental concept of work
done by a force, as well as the concepts of energy and power. Applications of the law of
conservation of energy are discussed.

Dbjectives

By the end of this chapter you should be able to:

+ state the definition of work done by a force, W = Fs cos 6, appreciate the
significance of the angle appearing in the formula and understand that
this formula can only be used when the force is constant;

» understand that the work done by a varying force is given by the area under

i the graph of force versus displacement;

| = state the definitions of kinetic energy, Ly, = }nwﬂ (also £y, = 5; i

: gravitational potential energy, £, = mgh, and elastic potential energy,

Eo= 3kx®.

= appreciate that gravitational potential energy can be calculated by

‘ measuring heights from an arbitrary level;

|+ understand that, when frictional forces are absent, the total energy

| E =FEy+Ep+ Ee = mv? + mgh + Jkx? is conserved;

« use the work-kinetic energy relation that states that the work done by
the net force is the change in kinetic energy,

« understand that, in the presence of external forces, the work done is the
change in the mechanical energy, W= AF;

= state the definition of power, F = % and its very useful form in
mechanics, P = Fy;

= calculate the efficiency of simple machines;

* understand that in all collisions momentum is always conserved, but that
kinetic energy is only conserved in elastic collisions.

Work done hy a force called the work done by the force F' by

Consider a constant force F acting on a body of W = Fs cos@
mass im as shown in Figure 7.1. The body moves
a distance s along a straight line.

where @ is the angle between the force and the
direction along which the mass moves. (The

The force is always acting upon the body as it cosine here can be positive, negative or zero;
moves. Note that the force moves its point of thus work can be positive, negative or zero. We
application by a distance 5. We define a quantity will see what that means shortly.)
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Figure 7.1 A force moving its point of application
performs work.
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Example question
o
A mass is being pulled along a level road by a
rope attached to it in such a way that the rope
makes an angle of 40.0° with the horizontal. The
force in the rope is 20.0 N. What is the work
done by this force in moving the mass a distance
of 8.00 m along the level road?

Answer

Applying the definition of work done, we have
W= Fscosé

where F = 20.0N, s = 8.00m and # = 40°-Thus

W= 20 x 8 x cos 40°
=123}

If the force is not constant or the motion does
not take place in a straight line, or both, we
must be careful. First consider the case of a
force of constant magnitude when the motion
is not along a straight line.

Example questions
()2 ey T I TSI RIS P T AR S TEEE
Find the work done by the tension in a string, as a
mass attached to the end of the string performs
circular motion (see Figure 7.2).

Answer

This is a case where the force, although constant
in magnitude, changes in direction. However, the

90"

Figure 7.2.

angle between the force and any small
displacement of the mass as it revolves around the
circle is 90° and since cos 90° = 0, the work
done is zero,

[0k Bovetertesiie s Safinn oo phads sl phanstes el
A force of constant magnitude 25 N acts on a
body that moves along a curved path. The
direction of the force is along the velocity vector
of the body, i.e. it is tangential to the path. Find
the work after the mass moves a distance of 50 m
along the curved path.

Answer

The diagram on the left of Figure 7.3 shows the
path of the body. The diagram on the right is an
enlargement of part of the path. We see that the
work done when the body travels a small distance
As s

FAascosD® = FAs

Breaking up the entire path into small bits in this
way, and adding the work done along each bit,
we find that the total work done is W =Fs,

where s is the distance travelled along the
curved path.

Figure 7.3.

If the force is not constant in magnitude, we
must be supplied with the graph that shows the
variation of the magnitude of the force with
distance travelled. Then we have the following
important result;
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We can apply this result to the case of the
tension in the spring. Since T =kx, where k is
the spring constant and x the extension (or
compression) of the string, the graph of force
versus position is as shown in Figure 74.

vvvvv

LA N -
+

extension

Figure 7.4 The area under a force-distance graph
gives the total work performed by the non-
constant force.

To find the work done in extending the
spring from its natural length (x = 0) to
extension x, we need to calculate the area of
the triangle whose base is x and height is

T = kx. Thus

area = ykx x x
= %kxz

The work to extend a spring from its natural
length by an amount x is thus

W= %kxz

It follows that the work done when extending
a spring from an extension x; to an extension
X2 (S0 X2 = X1) is

W= %k{,x%—xf]

Work done by gravity

We will now concentrate on the work done by
a very special force, namely the weight of a
mass. Remember that weight is mass times
acceleration due to gravity and is directed
vertically down. Thus, if a mass is displaced

horizontally, the work done by my is zero,
since in this case the angle is 90°:
W = mgd cos 90° = 0. (See Figure 7.5.)

displacement

S

Figure 7.5 The force of gravity is normal to this
horizontal displacement so no work is being
done.

Note that we are not implying that it is the
weight that is forcing the mass to move along
the table. We are calculating the work done by
a particular force (the weight) if the mass
[somehow) moves in a particular way.

If the body falls a vertical distance h, then
the work done by W is +mgh. The force of
gravity is parallel to the displacement, as in
Figure 7.6a.

If the mass is thrown vertically upwards to a
height h from the launch point, then the
work done by W is -mgh since now the
angle between direction of force (vertically
down) and displacement (vertically up) is
180°. The force of gravity is parallel to the
displacement but opposite in direction, as in
Figure 7.6b.

A
¢ 9

() (b)

Figure 7.6 The force of gravity is parallel to the
displacement in (a) and anti-parallel (i.e. parallel
but opposite in direction) in (b).
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Consider now the case where a mass moves along
some arbitrary path, as shown in Figure 7.7.

nnisj;ll_l—'_ '—I_Ll_l_lﬂ_mrﬂ

Figure 7.7 The work done by gravity is
independent of the path followed.

h

The path consists of horizontal and vertical
segments. We now ask about the work done by
the weight of the mass. The work done by myg
will be equal to the sum of the work done along
each horizontal and vertical step. But mg does
no work along the horizontal steps since the
angle between the force and the displacement
in that case will be 90° and cos90° = 0. We are
thus left with the vertical steps only. The work
done along each step will be +mg Ah, where Ah
is the step height. The plus sign is used when
we go down a step and the minus sign when we
go up a step. (In Figure 7.7 the mass will be
forced to go up twice and down eight times.)
Thus, what counts is the net number of steps
going down (six in our figure). But, this adds up
to the vertical distance separating the initial
and final position. Hence, the work done b}i mgq

is mgh.

If the start and finish positions are joined by an
arbitrary smooth curve rather than a ‘staircase’,
the result is still the same. This is because we
can always approximate a smooth curve by a
series of horizontal and vertical steps; the
quality of the approximation depends on how
small we take the steps to be. This means that:
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Work done in holding something still

If you try to hold up a heavy object, such as a
chair, you will soon get tired. However, the force
with which you are holding the chair does zero
work since there is no displacement. This is
somewhat unexpected. We normally associate
getting tired with doing work. Indeed, the forces
inside the muscles of the arm and hand holding
the chair do work. This is because the muscles
stretch and compress and that requires work,
Just as stretching and compressing a spring does.

Gravitational potential energy

As we just saw, the weight mg of a mass m a
height h from the ground will perform work
mgh if this mass moves from its position down to
the ground. The ability to do this work is there
because the mass just happens to be at a height
h from the ground. The ability to do work is
called energy. When the force in question is the
weight (which depends on gravity), we call this
energy gravitational potential energy:

EF zﬂ'.gh

Any mass has gravitational potential energy by
virtue of its position. But what determines h?
Obviously, we have to choose a reference level
from which we will measure heights. But we
can choose any level we like. A mass m = 2kg
sitting on a table 1 m from the floor will have
Ep=2x10x 1=20) if the reference level is
the floor, but will have E, = 0 if the reference
level is the table. If the reference level is chosen
to be the ceiling, 2 m above the table, then

Ep =—2x10x2=—40 ). (See Figure 7.8.)

2m

Figure 7.8 The mass has different potential energies
depending on the reference level chosen.
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So, the same mass will have different
gravitational potential energy depending on
what reference level we choose, This might seem
to make £, a useless quantity. But if you are
patient, you will see that this is not the case.

Potential energy can be understood in the
following way. Consider a mass resting on a
horizontal floor. If an external force equal to
mg is applied to the mass vertically up and the
mass moves without acceleration to a position h
metres higher than the floor, the work done by
the external force is mgh. What has become of this
work? This work has gone into gravitational
potential energy of the mass. This energy is
stored as potential energy in the new position
of the mass. Similarly, if a spring is initially
unstretched and an external force stretches it
by an amount x, then the work done by this
external force is 5kx?. This work is stored as
elastic potential energy in the (now stretched)
Spring.

p-atmhal.enel:gies:.when an m:lrmt ﬁm:e '
changes the state of a system without
amﬂh:aﬁun an'd dhes w‘k Wi:i the

'pmenﬂalwinﬂmnewmdthe : ',

Example question

()4 422808 1S ST T ST TS TTITITPOE R S EEEEST
A mass of 10 kg rests on top of a vertical spring
whose base is attached to the floor. The spring
compresses by 5 cm. What is the spring constant
of the spring? How much energy is stored in the

spring?
Answer

The mass is at equilibrium so

mg = kx

The stored energy is

—kx*

E"Z

1 i
3 * 2000(0.05)°

= 2.5)

The work-kinetic energy relation

What effect does the work done have on a body?
When a body of mass m is acted upon by a net
force F, then this body experiences an

L in the direction of F.
Suppose that this body had speed vy when the
force was first applied to it and that the speed
after moving a distance x (in the direction of the
net force) becomes vy, as shown in Figure 7.9.

T'E —
F
Figure 7.9 A force accelerates a mass, increasing its
kinetic energy.

acceleration a =

-"II'I F
—

We know from kinematics that
v =vj + 2ax
so replacing the acceleration by Fim we find
‘i'_
2 2
Vi =¥ 2—x
=¥y e

1, 1
MV — Mg

But Fx is the work done on the mass. This work
equals the change in the quantity £, = smv?, a
quantity called the kinetic energy of the mass.
We thus see that the net work done on a mass
results in a change of the kinetic energy of the
object. This is a very useful result with

applications in many areas of physics.

= Fx =

'Fﬁéﬂﬁkﬁbﬁﬁﬁﬁemmoﬁaﬁﬁdyiﬁ 121
{helﬁ:dr
uﬁrkdumhynetﬁ:me_aﬂ '
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Example questions

()5 ITIEMSeTTIIISITTTL: ST PITLIIFFFTELE 400 TTT
A mass of 5.00 kg moving with an initial velocity
of 12.0 m s™ is brought to rest by a horizontal
force over a distance of 12.0 m, What is the
force?

Answer
The change in the kinetic energy of the mass is
(final minus initial)

1

ﬂ——-mvzz—lXE.{]ﬂx 144
2 2

= —360)
The work done by the force f is
~fs==12F
Hence

=12 =-360
= f=30.0N

(There is a minus sign in the work done by f
because the force is acting in a direction opposite
to the motion and cos 180° = -1.)

Qf ES I EE T ST T TS
An electron is acted upon by an electric force that
accelerates it from rest to a kinetic energy of

5.0 % 107" | If this is done over a distance of

3.0 cm, find the electric force.

Answer

The work done by the electric force is the change
in kinetic energy (the electric force is the only
force acting and so it is the net force) and equals
the product of force times distance, Hence

Fx003=50x10""
= F =1.7 % Iﬂ_” N

Q7 sy I S FFL LIS M T H S FES TE LI 95
A mass m hangs from two strings attached to the
ceiling such that they make the same angle with
the vertical (as shown in Figure 7.10). The strings
are shortened very slowly so that the mass is
raised a distance h above its original position.
What is the work done by the tension in each
string as the mass is so raised?

Figure 7.10.

Answer

The net work done is zero since the net force on
the mass is zero. The work done by gravity is
-mgh and thus the work done by the two equal
tension forces is +mgh. The work done by each is
thus mgh/2.

(8 19T LR L ST PN LSV N TS
A mass m hangs vertically at the end of a string of
length L. A force F is applied to the mass
horizontally so that it slowly moves to a position a
distance h higher, as shown in Figure 7.11. What
is the work done by the force F? (Note: F is not
constant,)

Figure 7.11.

Answer

The answer is obtained at once by noting that since
the mass is in equilibrium at all times the net force is
zero and hence the work done by the net force is
zero. But T does zero work since it is always
normal to the direction in which the mass moves
(along the arc of a circle). The weight does work
—mgh and thus the work done by F must be +mgh.

Conservation of energy

We have already seen that, when a net force F
performs work W on a body, then the kinetic
energy of the body changes by W (here the
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subscripts i” and ‘I" stand for ‘initial’ and
‘final’)

W= AL,
= ymwf — Jmw?

Consider now the case where the only force
that does work on a body is gravity. This
corresponds to motions in which the body 15
either in free fall (gravity is the only force
acting) or the body is sliding on a frictionless
surface (we now have the normal reaction force
acting here as well as gravity but this force does
zero work since it is normal to the direction of
motion). Suppose that the vertical height of the
body when the velocity is v; is H, and the
velocity becomes vy at a height of h from the
reference level (see Figure 7.12).

sian

finish

H

Figure 7.12 The total energy at the top and bottom
(and at any point in between) of the incline is
the same.

The work done by gravity is simply mg(H “h)
and so

mg(H —h) = ymv? — Smw?

Sire - L L L LT T T

" kinetic only

Figure 7.13.

potential only

This can be rearranged as
mgh + ymvi =mgH + ymv}

which shows that in the motion of this body
the sum of the kinetic and potential energies of
the mass stays the same. Calling the quantity
mgh + smy? the total energy of the mass, then
the result we derived states that the total
energy [ of the mass stays the same at all
times, i.e. the total energy is conserved,

E.‘ = Er

As the mass comes down the plane, its potential
energy decreases but its kinetic energy
increases in such a way that the sum stays the
same. We have proven this result in the case in
which gravity is the only force doing work in
our problem. Consider now the following
example questions.

Example queslions

()Y LIETITTorTTresTISIsL L 20 20 o TSTITTEIOSENIL
Find the speed of the mass at the end of a
pendulum of length 1.00 m that starts from rest at
an angle of 10° with the vertical.

Answer

Let us take as the reference level the lowest point
of the pendulum (Figure 7.13). Then the total
energy at that point is just kinetic, £y = $mv?,
where v is the unknown speed. At the initial point
the total energy is just potential, £, = mgh, where
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h is the vertical difference in height between the
two positions, that is

h=1,00-1.00ces 10"
=0.015m
(see Figure 7.13)

Thus

12
smv" = mgh

v=+/2gh

=0.55ms™"

Mote how the mass has dropped out of the
problem. (At positions other than the two shown,
the mass has both kinetic and potential energy.)

Q10
A mass rolls up an incline of angle 28° with an
initial speed of 3.0 m s~'. How far up the incline
will the mass get?

Answer

Let the furthest the mass will get be a height h
from the floor, as shown in Figure 7.14. At this
point the kinetic energy must be zero since
otherwise the mass would have climbed higher.
Then the total energy at this point is just

E = mgh. The total energy at the initial
position is

F=1m
and so
V2
=4

giving h = 0.45 m. The distance moved along the
plane is thus

0.45
= (.96 m,
sin 28°
=1}
potential
kinetic only only

O A LS T T T T TR T
What must the minimum speed of the mass in
Figure 7.15 be at the initial point such that the
mass makes it over the barrier of height h?

Answer

To make it over the barrier the mass must be able
to reach the highest point. Any speed it has there
will then make it roll over. Thus, at the very least,
we must be able to get the ball to the highest point
with zero speed. Then the total energy would be
just E = mgh and the total energy at the starting
position is F = ; mv?. Thus, the speed must be
bigger than v = /2Zgh. Note that if the initial speed
u of the mass is larger than v = /2gh, then when
the mass makes it to the other side of the barrier its
speed will be the same as the starting speed u.

()12 E=srrsarcmaes s ITVENEES TGN
A mass rolls off a 1.0 m high table with a speed of
4.0 m s, as shown in Figure 7.16. With what
speed does it strike the floor?

1.0 m !

Figure 7.16.

Answer

The total energy of the mass is conserved. As it
leaves the table it has total energy given by

E = 1mv? + mgh and as it lands the total energy
is E = {mu? (u is the speed we are looking for).
Equating the two energies gives

Tmut = Imv? + mgh

= o’ = + 2gh
=164 20 = 36

=u=60ms"'
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Q17 N T ST YTV S TR F T IR T PR e kA AR
A ball is thrown vertically upward with a speed of
4.0 m s™" from a height of 1.0 m from the floor, as
shown in Figure 7.17. With what speed does the
ball strike the floor?

l 40msg!

Figure 7.17.

Answer

Working in precisely the same way as in the
previous example we find

imu® = T’ + mgh
= u" =+ 2gh
=16+ 20
= 36

=Su=6.0ms"

(The answer is the same as that for example
question 12 — why?)

If, in addition to the weight, there are spring
tension forces acting in our system, then the
previous discussion generalizes to again

lead to

E,=E;

where now the total mechanical energy
includes elastic potential energy as well, that is

E =imv? +mgh + Jkx?

Example question

()14 S2eIITETFITEF IS MM SE I SRIITIIT]
A body of mass 0.40 kg is held next to a
compressed spring as shown in Figure 7.18. The
spring constant is k = 250 Nm~" and the
compression of the spring is 12 cm. The mass is
then released. Find the speed of the body when it
is at a height of 20 cm from the horizontal.

20 ¢cm

Figure 7.18.

Answer

Initially the total mechanical energy of the system
is only the elastic potential energy of the spring

E = ijxz
=1 %250 x0.127
=1.8])

Al a height of 20 ecm from the floor, the total
mechanical energy consists of kinetic and
gravitational energies only. The spring has
decompressed and so has no elastic potential
energy. Then

E= _';_mv‘}' + mgh
= 10.4)v" + (0.4)(10){0.20)
=0.2v+0.8

Thus

02V +08=1.8
=0.2v*=1.0
=yi=75

=v=22ms"!

Frictional forces

In the presence of friction and other resistance
forces, the mechanical energy of a system (i.e. the
sum of kinetic, gravitational potential and
elastic potential energies) will not be conserved.
These forces will, in general, decrease the total
mechanical energy of the system. Similarly,
external forces, such as forces due to engines,
may increase the mechanical energy of a
system. In these cases we may write

W = AE
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where W stands for the total work done by the
external forces and AFE is the change in the
mechanical energy of the system. By external
forces we mean forces other than weight and
spring tension forces.

This equation is easily understood in the
following way. If there are no external forces,
then W =0, AL =0 and the total mechanical
energy stays the same: it is conserved.

If, on the other hand, external forces do act on
the system, then the work they do goes into
changing the mechanical energy. If the work
done is negative (resistance forces), the
mechanical energy decreases. If the work done
is positive (pulling forces), the mechanical
energy increases,

Example question

()15 EO Ty s P I A M LA OS IR e
A body of mass 2.0 kg (initially at rest) slides
down a curved path of total length 16 m as
shown in Figure 7.19. When it reaches the
bottom, its speed is measured and found to equal
6.0 ms~'. Show that there is a force resisting the
motion. Assuming the force to have constant
magnitude, determine what that magnitude is.

S50m

Figure 7.19.

Answer

Without any resistance forces, the speed at the
bottom is expected to be

v=/2gh
=+2%x10x5.0

=10ms™"

The measured speed is less than this and so there
is a resistance force. The total mechanical energy

at the top is
Eiop = mgh
=2.0x 10 x 5.0
=100 ]

At the bottom it is

E bottom = %mv1

=1 x 2.0 x (6.0)*

= 36|

The total energy decreased by 64 | — this must be
the work done by the resistance force. Thus

fs==064)

64

= f=—

16
=40N

We have seen that in the presence of external
forces the total mechanical energy of a system
1s not conserved. The change in the total energy
is the work done by the external forces. Another
way of looking at this is to say the change in
the mechanical energy has gone into other
forms of energy not included in the mechanical
energy, such as thermal energy (‘heat’) and
sound. In this way total energy (which now
includes the other forms as well as the
mechanical energy) is conserved. This is the
general form of the law of conservation of
energy, one of the most important principles of

physics.

i, e et
atedd

Power

When a machine performs work, it is important
to know not only how much work is being done
burt alse how much work is performed within a
given time interval. A cyclist performs a lot of
work in a lifetime of cycling, but the same work
is performed by a powerful car engine in a
much shorter time, Power is the rate at which
work is being performed.
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Another common unit for power when it comes
to machines and car engines is the horsepower,
hp, a non-S[ unit that equals 746 W.

Consider a constant force I, which actson a
body of mass m. The force does an amount of
work F Ax in moving the body a small distance
Ax along its direction. If this work is performed
in time Af, then

AW

P 5
Al

Ax
=F—
:FV

where v is the instantaneous speed of the mass.
This is the power produced in making the body
move at speed v. As the speed increases, the
power necessary increases as well. Consider an
aeroplane moving at constant speed on a straight-
line path. If the power produced by its engines is
P, and the force pushing it forward is F, then P,
F and v are related by the equation above. But
since the plane moves with no acceleration, the
total force of air resistance must equal F. Hence
the force of air resistance can be found simply
from the power of the plane’s engines and the
constant speed with which it coasts.

Example questions

Q1H EoHYRETEEn T RaEaEsT N
What is the minimum power required to lift a mass
of 50.0 kg up a vertical distance of 12 m in 5.0 s?
Answer

The work performed to lift the mass is

mgh=50.0 x 10 x 12
=6.0x10")

The power is thus

6.0 x 10°

= 1200 W
5.0

This is only the minimum power required. In
practice, the mass has to be accelerated from rest,
which will require additional work and hence
more power.

017 s T e S I R ST R ST
A helicopter rotor whose length is R pushes air
downwards with a speed v. Assuming that the
density of air is constant and equals p and the
mass of the helicopter is M, find v. You may
assume that the rotor forces the air in a circle of
radius R (spanned by the rotor) to move with the
downward speed v. Hence find the power
developed by the engine. How does this power
depend on the linear size of the helicopter?

Answer

The momenturm of the air under the rotor is mv,
where m is the mass of air in a circle of radius R.
In time At the mass is enclosed in a cylinder of
radius R and height vat. Thus, the momentum of
this mass is prR*v* At and its rate of change is
prREv . This is the force on the helicopter
upwards, which must equal the helicopter’s
weight of Mg. Thus

Mg = paR*V

Mg
#V‘v,ﬁﬁ

The power required from the helicopter engine is
thus
F=F¥

Mg
pmR?

To find the dependence on a typical linear size L
of the helicopter, note that the weight depends on
Las L and so

3 L3 712
Po L Lsz

This implies that if the length of a helicopter is 16
times that of a model helicopter, its required
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power will be 16™* 2 16 000 times larger than
that for the model,

Efficiency

Suppose that a mass is being pulled up along a
rough inclined plane with constant speed. Let
the mass be 15 kg and the angle of the incline
45°. The constant frictional force opposing the
motion is 42 N.

Figure 7.20.

The forces on the mass are shown in Figure 7,20
and we know that

R =mg cos#
= 106.1N
F=mgsing +
= 106.1 + 42

=148 1N = 150N
since the mass has no acceleration. Let the force

raise the mass a distance of 20 m along the
plane. The work done by the force F is

W = 148.1 x 20
=2960J~3.0x 10°)

The force effectively raised the 15 kg a vertical
height of 14.1 m and so increased the potential
energy of the mass by mgh = 2121 |. The
efficiency with which the force raised the mass
is thus
- useful work
actual work
2121
~ 2960
1 G.?z

Example question

Q1] AT T T I S S PR TR ]

A 0.50 kg battery-operated toy train moves with

constant velocity 0.30 m s™' along a level track.

The power of the motor in the train is 2.0 W and

the total force opposing the motion of the train is

5.0 N.

{a) What is the efficiency of the train’s motor?

(b) Assuming the efficiency and the opposing
force stay the same, calculate the speed of the
train as it climbs an incline of 10.0° to the
horizontal.

Answer

{a) The power delivered by the motor is 2.0 W.
Since the speed is constant, the force
developed by the motor is also 5.0 N. The
power used in moving the train is
Fv=75.0x 0.30 = 1.5 W. Hence the
efficiency is

1.5W

T=%0w

= 0.75

(b

The net force pushing the train up the incline is
F=mgsind +5.0
=0.50 % 10 = sin 107 4+ 5.0
=589N=59N
Thus
5.89 x v
20W
=0.75
20 x075
7Y= " 589
=0.26 ms™'

n=

Kinetic energy and momentum

We have seen in Chapter 2.6 on momentum
that, in a collision or explosion where no
external forces are present, the total
momentum of the system is conserved. You can
easily convince yourself that in the three
collisions illustrated in Figure 7.21 momentum
is conserved. The incoming body has mass

8.0 kg and the other a mass of 12 kg.




2.7 Work, energy and power 111

E 10ms! ‘ P _1lﬂlms" E i 10ms! i
before : i j | — :I il 1
¥ i I (]
18 ke 12kg i ' 1I ! !
5 — Lt 1 5.
i + i - —
after : |_ ]_._ i i | ) _"i : E
1: 4dms! | ! Ims! gmsg! | | <2mg?! Sms! E
Figure 7.21 Momentum is conserved in these three collisions.
In the first collision the bodies have stuck Example questions

together and move as one. In the second the
incoming body has slowed down as a result of
the collision and the heavy body moves faster.
In the third the incoming body has bounced
back.

Let us examine these collisions from the point
of view of energy.

In all cases the total kinetic energy before the
collision is

Ek=%x3x]02=4m”

The total kinetic energy after the collision in
each case is:

case 1 Fj =3 x 20 x 4% =160
case2 Ey=3x8x17+4x12x6%=220)
case3 Ey=3x8x2%+}x12x 8 =400J

We thus observe that whereas momentum is
conserved in all cases, kinetic energy is not. When
kinetic energy is conserved (case 3), the
collision is said to be elastic. When it is not
{cases 1 and 2), the collision is inelastic. In an
inelastic collision, kinetic energy is lost. When
the bodies stick together after a collision

{case 1), the collision is said to be totally inelastic
and in this case the maximum possible kinetic
energy is lost.

The lost kinetic energy gets transformed into
other forms of energy, such as thermal energy,
deformation energy (if the bodies are
permanently deformed as a result of the
collision) and sound energy.

Q1Y s ST A LETT P M M TS D ETT]
A moving body of mass m collides with a
stationary body of double the mass and sticks to
it. What fraction of the original kinetic energy is
lost?

Answer

The original kinetic energy is ;mv*, where v is the
speed of the incoming mass. After the collision
the two bodies move as one with speed u that can
be found from momentum conservation:

my = ({m+ 2mju

L
U= —
3

The total kinetic energy after the collision is
therefore
v )3 vt

%(3!11]' (i

6

and so the lost kinetic energy is

m? v mvi

2 G 3

The fraction of the original energy that is lost is
thus

mv* /3 _ 2

mvij2 3

Q) FFPeses e D IR IS AT T TOREEESIRI FEDTEEl
A body at rest of mass M explodes into two
pieces of masses M/4 and 3M/4. Calculate

the ratio of the kinetic energies of the two
fragments.
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Answer

Here it pays to derive a very useful expression for
kinetic energy in terms of momentum. Since

e
Ep= —
=

it follows that

¥
mw= m
EL = — » —
2 m

vt

2m
P

2m

The total momentum before the explosion is zero,
s0 it is zero after as well. Thus, the two fragments
must have equal and opposite momenta. Hence

Eigh _ P*/(2Migh)
Eneawf - P)f'rlz-Mh'_-.w-,-}
— Mheawy
a thhl
~ 3M/4
T M4

=3

The problem of least time

In Figure 7.22 a number of paths join the
starting position A to the final position B.

B *
Figure 7.22.

A mass m at A will start with a tiny speed and
move down to B. As we saw, the speed at B will
be the same no matter what path the mass
follows. The speed will equal JZE in all cases.
This does not mean, however, that the time
taken is the same for all paths. Finding the path
joining A to B such that a mass takes the least

time is a famous problem in physics and
requires the development of a branch of
calculus called the calculus of variations. It is
called the brachistochrone (least time) problem.
The answer is that the curve joining A to B
must be a cycloid. This is the curve traced out
by a point on the rim of a wheel as the wheel
rolls. In Figure 7.22, curve IV resembles a cycloid
most. This problem was posed to both Newton
and Leibniz (the inventors of calculus) by the
Swiss mathematician Bernoulli. When Bernoulli
saw the solutions given by the two men, he is
supposed to have said of Newton ‘one can
always tell a lion by its claws’.

Questions

1 A horizontal force of 24 N pulls a body a
distance of 5.0 m along its direction.
Calculate the work done by the force.

2 A block slides along a rough table and is
brought to rest after travelling a distance of
2.4 m. The frictional force is assumed constant
at 3.2 N. Calculate the work done by the
frictional force.

3 Ablock is pulled as shown in Figure 7.23 by a
force making an angle of 20° to the horizontal.
Find the work done by the pulling force when
its point of application has moved 15 m.

F=23N

-
&

15m
Figure 7.23 For question 3.

4 A block of mass 4.0 kg is pushed to the right
by a force F = 20.0 N. A frictional force of
14.0 N is acting on the block while it is
moved a distance of 12.0 m along a
horizontal floor. The forces acting on the mass
are shown in Figure 7.24,

(a) Calculate the work done by each of the
four forces acting on the mass.

(b) Hence find the net work done.

(c) By how much does the kinetic energy of
the mass change?
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Figure 7.24 For question 4.

A weight lifter slowly lifts a 100 kg mass from

the floor up a vertical distance of 1.90 m and

then slowly lets it down to the floor again.

{a) Find the work done by the weight of the
mass on the way up.

(b) Find the work done by the force exerted by
the weight lifter when lifting the weight up.

fc) What is the total work done by the weight
on the way up and the way down?

A block of mass 2.0 kg and an initial speed of
5.4 m s~ slides on a rough horizontal surface
and is eventually brought to rest after travelling
a distance of 4.0 m. Calculate the frictional
force between the block and the surface.

A spring of spring constant k= 200 N-m™' is
slowly extended from an extension of 3.0 cm
to an extension of 5.0 cm. How much work is

done by the extending force?

A spring of spring constant k= 150 N m™" is

compressed by 4.0 cm. The spring is

horizontal and a mass of 1.0 kg is held to the

right end of the spring. If the mass is released,

with what speed will it move away?

Look at Figure 7.25.

{a) What is the minimum speed v the mass
must have in order to make it 1o position
B? What speed will the mass have at B?

(b) If v=12.0 ms™', what will the speed be
at A and B?

&

Figure 7.25 For question 9.

A mass is released from rest from the position
shown in Figure 7.26. What will its speed be
as it goes past positions A and BY

11

12

13

3.00 mI
4.00 mj

Figure 7.26 For question 10.

The speed of the 8.0 kg mass in position A in
Figure 7.27 is 6.0 m s~ '. By the time it gets to
B the speed is measured to be 12.0 ms™".

Figure 7.27 For question 11.

What is the frictional force opposing the
motion? (The frictional force is acting along
the plane.)

A toy gun shoots a 20,0 g ball when a spring
of spring constant 12.0 N m™' decompresses.
The amount of compression is 10.0 cm (see
Figure 7.28). With what speed does the ball
exit the gun, assuming that there is no friction
between the ball and the gun? If, instead,
there is a frictional force of 0.05 N opposing
the motion of the ball, what will the exit
speed be in this case?

[

10 cm

Figure 7.28 For question 12.

A variable force F acts on a body of mass

m = 2.0 kg initially at rest, moving it along a
straight horizontal surface. For the first 2.0 m
the force is constant at 4.0 N. In the next

2.0 m it is constant at 8.0 N. In the next 2.0 m
it drops from 8.0 N to 2.0 N uniformly. It then
increases uniformly from 2.0 N to 6.0 N in the
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15

16

17

18

19

next 2.0 m. It then remains constant at 6.0 N
for the next 4.0 m.

(a) Draw a graph of the force versus distance.
(b} Find the work done by this force.

{c) What is the final speed of the mass?

A body of mass 12.0 kg is dropped vertically

from rest from a height of 80.0 m. Ignoring

any resistance forces during the motion of this

body, draw graphs to represent the variation

with distance fallen of

(a) the potential energy;

(b) the kinetic energy.

For the same motion draw graphs to represent

the variation with time of

(c) the potential energy;

(d) the kinetic energy.

(e) Describe qualitatively the effect of a
constant resistance force on each of the
four graphs you drew.

A 25.0 kg block is very slowly raised up a
vertical distance of 10.0 m by a rope attached
to an electric motor in a time of 8.2 s. What is
the power developed in the motor?

The engine of a car is developing a power of
90.0 kW when it is moving on a horizontal
road at a constant speed of 100.0 km h™".
What is the total horizontal force opposing the
motion of the car?

The motor of an elevator develops power at a

rate of 2500 W.

(a) At what speed can a 1200 kg load be
raised?

(b) In practice it is found that the load is lifted
more slowly than indicated by your answer
to (a). Suggest reasons why this is so.

A load of 50.0 kg is raised a vertical distance

of 15 m in 125 s by a motor.

{a) What is the power necessary for this?

(b) The power supplied by the motor is in fact
80 W, Calculate the efficiency of the
motor.

(c} If the same motor is now used to raise a
load of 100.0 kg and the efficiency remains
the same, how long would that take?

For cars having the same shape but different
size engines it is true that the power
developed by the car’s engine is

|

20

21

22

23

proportional to the third power of the car’s
maximum speed. What does this imply
about the speed dependence of the wind
resistance force?

The top speed of a car whose engine is
delivering 250 kW of power is 240 km h™'.
Calculate the value of the resistance force on
the car when it is travelling at its top speed on
a level road.

Describe the energy transformations taking

place when a body of mass 5.0 kg:

{a) falls from a height of 50 m without air
resistance;

{b) falls from a height of 50 m with constant
speed;

(c) is being pushed up an incline of 30° to the
harizontal with constant speed.

An elevator starts on the ground floor and
stops on the 10th floor of a high-rise
building. The elevator picks up a constant
speed by the time it reaches the 1st floor
and decelerates to rest between the 9th and
10th floors. Describe the energy
transformations taking place between the
1st and 9th floors.

A car of mass 1200 kg starts from rest,
accelerates uniformly to a speed of 4.0 ms™
in 2.0 s and continues moving at this constant
speed in a horizontal straight line for an
additional 10 s. The brakes are then applied
and the car is brought to rest in 4.0 s. A
constant resistance force of 500 N is acting on
the car during its entire motion.

(a) Calculate the force accelerating the car in
the first 2.0 s of the motion.

{(b) Calculate the average power developed
by the engine in the first 2.0 s of the
motion.

(c) Calculate the force pushing the car
forward in the next 10 s,

{d} Calculate the power developed by the
engine in those 10 s,

(e} Calculate the braking force in the last 4.0 s
of the motion,

(ff Describe the energy transformations that
have taken place in the 16 s of the motion
of this car.
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A mass of 6.0 kg moving at 4.0 m s' collides
with a mass of 8.0 kg at rest on a frictionless
surface and sticks to it. How much kinetic
energy was lost in the collision?

Two masses of 2.0 kg and 4.0 kg are held in
place, compressing a spring between them.
When they are released, the 2.0 kg moves
away with a speed of 3.0 m s~'. What was the
energy stored in the spring?

A block of mass 0.400 kg is kept in place so

it compresses a spring of spring constant

120 N m~" by 15 cm (see Figure 7.29). The
block rests on a rough surface and the frictional
force between the block and the surface when
the block begins to slide is 1.2 N.

-Iuﬁ.--:;.
il
FLs =2y

Figure 729 For question 26.

(a) What speed will the block have when the
spring returns to its natural length?

(b) What percentage is this of the speed the
mass would have had in the absence of
friction?

Two bodies are connected by a string that

goes over a pulley, as shown in Figure 7.30.

The lighter body is resting on the floor and the

other is being held in place a distance of

5.0 m from the floor. The heavier body is then

released. Calculate the speeds of the two

bodies as the heavy mass is about to hit the
floor.

&

|| 40ke

50m

20k |J_?|

Figure 7.30 For question 27

28

29

30

i

A mass m of 4.0 kg slides down a frictionless

incline of # = 30° to the horizontal.

{a) Plot a graph of the kinetic and potential
energies of the mass as a function of
time.

(b) Plot a graph of the kinetic and potential
energies of the mass as a function of
distance travelled along the incline.

(c) On each graph, plot the sum of the
potential and kinetic energies. The mass
starts from rest from a height of 20 m.

Show that an alternative formula for kinetic
energy is £y = 4, where p is the momentum
oi the mass m. This is very useful when

dealing with collisions.

A body of mass M, initially at rest, explodes
and splits into two pieces of mass M/3 and
2M/3, respectively. Find the ratio of the
kinetic energies of the two pieces. (Use the
formula from the previous problem.)

A mass m is being pulled up an inclined plane

of angle @ by a rope along the plane.

(a) What is the tension in the rope if the mass
moves up at constant speed v?

(b) What is the work done by the tension
when the mass moves up a distance of
d m along the plane?

fc) What is the work done by the weight of
the mass?

(d) What is the work done by the normal
reaction force on the mass?

{e) What is the net work done on the mass?

32 A mass m= 2.0 kg is attached to the end of a

string of length L = 4,5 m, The other end of
the string is attached to the ceiling. The string
is displaced from the vertical by an angle

#y = 50° and then released. What is the
tension in the string when the string makes an
angle § = 20° with the vertical?

33 A car of mass 1200 kg is moving on a

horizontal road with constant speed 30 ms™'.
The engine is then turned off and the car will
eventually stop under the action of an air
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resistance force. Figure 7.31 shows the
variation of the car’s speed with time after the
engine has been turned off.

wim st
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Figure 7.31 For question 33,

(a) Calculate the average acceleration of the
car in the first and second 10 s intervals.

(b) Explain why it takes longer to reduce the
speed from 20.0 ms™' to 10.0 ms™'
compared with from 30.0 ms™' to
200ms™,

(c) The average speed in the first 10 s interval
is 21.8 ms~' and in the second it is
13.5 ms™', Use this information and your
answer in (a) to deduce that the air
resistance force is proportional to the
square of the speed.

{d) Calculate the distance travelled by the car
in the first and second 10 s intervals.

{e) Calculate the work done by the resistance
farce in the first and second 10 s intervals.

34 A bungee jumper of mass 60 kg jumps from a
bridge 24 m above the surface of the water.
The rope is 12 m long and is assumed to obey
Hooke's law.

{a) What should the spring constant of the
rope be if the woman is to just reach the
water?

(b} The same rope is used by a man whose
mass is more than 60 kg. Explain why the
man will not stop before reaching the
water. (Treat the jumper as a point and
ignore any resistance to motion.)

35 For the bungee jumper of mass 60 kg in
question 34, calculate:

{al the speed of the jumper when she has
fallen by 12 m;

(b) the maximum speed attained by the
jumper during her fall.

(c) Explain why the maximum speed is reached
after falling more than a distance of 12 m
(the unstretched length of the rope).

(d)  Sketch a graph to show the variation of the
speed of the jumper with distance fallen.

36 A carriage of mass 800 kg moving at 5.0 ms™'
collides with another carriage of mass 1200 kg
that is initially at rest. Both carriages are
equipped with buffers. The graph in
Figure 7.32 shows the velacities of the two
carriages before, during and after the collision.

L

15

Figure 7.32 For question 36.

Use the graph to:

{a} show that the collision has been elastic;

(b) calculate the average force on each
carriage during the collision;

{c) calculate the impulse given to the heavy
carriage.

(d) If the buffers on the two carriages had
been stiffer, the time of contact would
have been less but the final velocities
would be unchanged. How would your
answers to (b} and (c) change?

{e) Calculate the kinetic energy of the two
carriages at the time during the collision
when both have the same velocity and
compare your answer with the final kinetic
energy of the carriages. How do you
account for the difference?
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Show that in an elastic, head-on collision of a
particle of mass m with a stationary particle
of mass M the fraction of the original kinetic
energy transferred to M is

4Mm

i+ M)?

Two masses of 3.0 kg and 8.0 kg collide
head-on elastically. Before the collision the
8.0 kg mass is at rest and the 3.0 kg moves
at speed 10.0 m s~'. Find the velocities after
the collision.

Two masses of 6.0 kg and 4.0 kg are
constrained to move on a frictionless
horizontal ring as shown in

Figure 7.33.

6.0 kg
ims”

4.0k

Figure 7.33 For question 39.

Initially the heavy mass is at rest and

the other moves in a counter-clockwise
direction with speed 5.0 ms . Att =05
the two masses collide elastically. With
what velocities do the masses move

after the collision? At what points on the
circle do subsequent collisions take
place?

A mass m moves with a speed v on a

horizontal table towards a wedge of mass M,

as shown in Figure 7.34. How high on the

wedge will m get if:

(a) the wedge is firmly fixed on the table;

(b} the wedge is free to move on the table
without friction?

Figure 7.34 For question 40.

41 A battery toy car of mass 0.250 kg is made to
move up an inclined plane which makes an
angle of 30° with the horizontal. The car
starts from rest and its motor provides a
constant acceleration of 4.0 m s~ for 5.0 s.
The motor is then turned off.

{a) Find the distance travelled in the first 5 s.

(b) Find the furthest the car gets on the
inclined plane.

{c) When does the car return to its starting
place?

(d) Make a graph of the velocity as a
function of time.

{e} On the same axes, make a graph of the
kinetic energy and potential energy of the
car as a function of the distance travelled.

{f) In which periods in the car’s motion is its
mechanical energy conserved?

{g) What is the average power developed by
the car’s motor?

(h) What is the maximum power developed
by the motor?

42 A white billiard ball collides with a black
billiard ball that is initially at rest. After the
collision, the balls move off with an angle &
between them, as shown in Figure 7.35.

befare collision
white ball black ball

after callision O/

Figure 7.35 For question 42,
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The initial momentum of the white ball is . 43 A spring of natural length 0.150 m and spring

Adfter the collision the momentum of the
white ball is f,, and the momentum of the
black ball is py. Arrows representing the
momentumn of the white ball before and after
the collision are shown in Figure 7.36.

: P
Figure 7.36 For question 42(a).

{a) Copy the diagram. On it, draw an arrow
to represent the momentum of the black
ball after the collision.

(b) Explain the arrow you have drawn in (a).

{c) On your copy of the diagram, label the
angle 4.

{d) The collision is an elastic collision, and
the two balls have identical masses.
Deduce that the angle & between the
balls after the collision is 90°.

(e} In the case of an inelastic collision
between the two balls, Figure 7.36 is
replaced by Figure 7.37. Copy this
diagram. On it, draw an arrow to
represent the momentum of the black
ball after the collision in this case.

P

Figure 7.37 For question 42(e),

constant 4,00 Mm™' is attached at point P, as
shown in Figure 5.26. The other end of the
spring is attached to a ring that goes over a
frictionless vertical pole. The mass of the ring
is 0.100 kg. The spring may be assumed to be
massless. Initially the ring is held horizontal so
that the length PA is 0.300m. The ring is then
allowed to drop.

Figure 5.26 For question 26.

(a) Calculate (using g = 10.0 ms™ %)

(i) the speed of the ring when it reaches
point B, a vertical distance of 0.400m
from point A;

(ii) the magnitude of the force exerted on
the ring by the pole at point B;

(i) the acceleration (magnitude and
direction) of the ring at B;

fiv) the largest distance below A to which
the ring falls (use your graphical
calculator);

(v} the maximum speed of the ring during
its fall and the distance fallen when
this happens (use your graphical
calculator).

(b} Using your graphical calculator, plot the
speed of the ring as a function of distance
fallen from A.

{c) The ring will start moving upwards after
reaching its lowest point. Discuss whether
the ring will move higher than paint A or
whether it will stop at A,
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Circular motion

Our discussion of maotion so far has been restricted to motion in a straight line. In this
chapter, we examine the more complicated motion of an object along a circular path.

~ Objectives

By the end of this chapter you should be able to:
« understand that acceleration is present when the magnitude of the velocity,

or its direction, or both change;

» understand that in motion on a circle with constant speed there is
centripetal acceleration of constant magnitude, a. = =, directed at the

centre of the circle;

* recognize situations in which a force is acting in a direction toward the
centre of a circle;
« solve problems involving applications of Newton's second law to motion
on a circle, F,., =ma,. = %

Circular motion and centripetal
acceleration

‘We now examine the case of motion on a circle.

Consider the object in Figure 8.1, which rotates
on a circle of radius R in the counter-clockwise
direction, with constant speed v.

Let T be the time taken to complete one full
revolution. We call T the period of the motion.
Since the speed is constant and the object
covers a distance of 27 R in a time of T s, it

Figure 8.1 An object moving on a circle of
radius £.

follows that

_2nR

etk

We may also note that the object sweeps out an
angle of 2 radians in a time equal to the

period, so we define the angular speed of the
object by

In’

angle swepl
I = ik e 4
angllor speed time taken
that is
2n
—rhy

The units of angular speed are radians per
second or just s~ .

It is important to note right away that the
speed may be constant but the velocity is not.
It keeps changing direction. (The velocity
vector is at a tangent to the circle - see
Figure 8.2.) Since the velocity changes, we
have acceleration.
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¥ .
. velocity
vector at P

i:l-

Figure 8.2 The velocity vector is tangent to the
circular path.

What follows is a derivation of the expression for

acceleration in circular motion. You may want
to skip it and go directly to the result just
before the end of this section (p. 120),

The position vector at time 1; is given by ry and
at a later time {7 by the vector r». Note that
since we chose the origin of our coordinate
axes to be at the centre of the circle, the
displacement vector of the moving object
always has the same magnitude, equal to the
radius of the circle. Thus, what changes as the
object moves is the direction of the
displacement vector, not its magnitude. The
velocity of the object is defined as

.- N

YT
where AP is a vector representing the
difference r> — ry, and the time difference
Al =1y — 1y is assumed to be as small as
possible. It is clear that the vector Ar is the
vector from P to Q. Similarly, the speed of the
object is the distance travelled, which is the
length of the arc As divided by Al. But
remember that the time interval Al =1 — Iy
must be taken to be as small as possible,
As this time difference becomes infinitesimal,
Ar becomes tangential to the circle at point P.

» This means that the direction of the
w&ﬁtrﬁ}rmnmnonadlﬂehasa
dn*emﬂn thatisata tanrgent 1o th;f#ff-‘lﬂ-

............

{m Egm &3}

-------

veloc:lt} vectors for motion
along an arbitrary curve

Figure 8.3 The velocity vector is tangential to the
path.

The magnitude of the velocity is the magnitude
of Ar divided by Al. The speed, on the other
hand, is the ratio of As, the distance travelled,
to At. Thus, the magnitudes of velocity and
speed appear to be different. But recall again
that Al must be infinitesimal, which implies
that the difference in the length of As and that
of AF becomes negligible. Thus, the magnitude
of velocity is the speed.

» Similarly, for acceleration

. E ,‘M : L iya : ;

: 1Whereaﬂs;1vectan11ms,webaw T

| 'amelmﬁnnmyumetha?elmww
_cha!:gummmrwﬂleh@guf 731
i-itsmaglﬂtmiechanges----_;; : T

-+ the direction changes; =
thathma.gmmdeanﬂﬂk&eﬂmcbange

For motion in a circle with constant speed, it is
the direction of the velocity vector that
changes. We must thus find the difference

¥ — ¥p. (Note that the magnitude of the
velocity vectors at P and Q are the same - they
equal the constant speed v of the moving
object.)

In Figure 8.4 the velocity vector at  has been
moved parallel to itself so that it starts at the
same point as the velocity vector at P. The
difference is thus as shown. The magnitude of
this vector can be found from simple
trigonometry. From the sine rule

Av v
sinf  sin (3 — %)
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velocity at

o Gl

velocity at P A

Figure 8.4 The velocity vector changes direction in
circular motion, hence we have acceleration.

Recall now that the points P and Q are
separated only infinitesimally from each other
and so the angle ¢ is very small. Thus, sinfl = 6
and sin(3 — §) = 1 (the angle must be expressed
in radians). Further, = §¢ and As = v Al.
Substituting, we find

v Al
Ay =
R
=, —Vz
TR

This gives us the magnitude of the
acceleration vector for motion around a circle
of radius R with constant speed v. As we see,
the magnitude of the acceleration vector is
constant, if v is constant. But what about its
direction? As Al gets smaller and smaller, the
angle @ gets smaller and smaller, which means
that the vector A¥, which is in the direction
of acceleration, becomes perpendicular to 7.
This means that the acceleration vector is
normal to the circle and directed towards the
centre of the circle. It is a centripetal
acceleration.

el
STt

—— e e

Figure 8.5 The centripetal acceleration vector is
normal to the velocity vector.

If the magnitude of the velocity changes, we
have tangential acceleration. This is a vector
directed along the velocity vector if the speed is
increasing and opposite to the velocity vector if
the speed is decreasing. The magnitude of the
tangential acceleration is given by

A

0 =—
LW

where v is the speed and Al is infinitesimally
small.

When the velocity direction and magnitude are
changing, we have both centripetal acceleration
and tangential acceleration. The total
acceleration is then the vector sum of the
vectors representing these accelerations.

Example questions

I e s ]
A mass moves along a circle of radius 2.0 m with
constant speed. It makes one full revolution in

3.0 s. What is the acceleration of the mass?

Answer

The acceleration is v*/ R so we need to know v.
But since the mass covers a distance of 22K in a
time T = 3.0 5, we must have

2x314x2.0
T 3.0ms!
=4.2ms™!

Hence a= 8.8 ms 2,
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QE‘ j=asepassssssnsyressnssnesuisrsrad et shad szl
The radius of the earth is R = 6.4 x 10° m. What
is the centripetal acceleration experienced by
someone on the equator?

Answer

A mass on the equator covers a distance of 2aR in
atime T =1 day. Thus

v=4.6x%10¢ms™

and so
a=34%10"ms?

This is quite small compared with the acceleration
due o gravity.

(}3} Eo e N T R A I LA LN S e D
A mass moves in a circle with constant speed in a
counter-clockwise direction, as in Figure 8.6a.
What is the direction of the velocity change when
the mass moves from A to Bf

fal {h)
Figure 8.6.

Answer

The velocity at A is vertical and at B it points to
the left. The change in the velocity vector is

vg — v and this difference of vectors is directed
as shown in Figure 8.6b.

Centripetal forces

If we know that a body moves in a circle, then

we know at once that a net force must be acting

on the body, since it moves with acceleration. If
the speed is constant, the direction of the
acceleration is towards the centre of the circle
and therefore that is also the direction of the
net force. It is a centripetal force. Consider a
car that moves on a circular level road of radius
r with constant speed v. Friction between the

wheels and the road provides the necessary
force directed towards the centre of the circle
that enables the car to take the turn. (See
Figure 8.7

. path followed 1f
top view ; speed is oo high

\EID‘.‘IW Vector
|
mg
side view

Figure 8.7 A car will skid outwards (i.e. will cover
a circle of larger radius) if the friction force is
not large enough.

Example questions

O P s+ LI I T T ST R R P SN
A mass is tied to a string and mowves with constant
speed in a horizontal circle. The string is tied to
the ceiling, at a point higher than the mass. Draw
the forces on the mass.

Answer

The common mistake here is to put a horizontal
force pointing toward the centre and call it the
centripetal force. When you are asked to find
forces on a body, the list of forces that are
available include the weight, reaction forces (if the
body touches another body), friction (if there is
friction), tension (if there are strings or springs),
resistance forces (if the body moves in air or a
fluid), electric forces (if electric charges are
involved), etc. Nowhere in this list is there an
entry for a centripetal force.

Think of the word centripetal as simply an
adjective that describes forces already acting on
the body, not as a new force. In this example, the
only forces on the mass are the weight and the
tension. If we decompose the tension into
horizontal and vertical components, we see that
the weight is equal and opposite to the vertical
component of the tension. This means that the
only force left on the body is the horizontal
component of the tension. We may now call this
force the centripetal force. But this is not a new
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force. It is simply the component of a force that is
already acting on the body. (See Figure 8.8.)

aT

] '--_‘ o —— A e
oy The horizontal component of
R the tension is the net force on
the body. It points toward the
w centre so we may call it o
centripetal force. But it is
nothing more than a component
of the tension force,

Figure 8.8.

Q5 R VT T s T e A R B B 51
A mass m is tied to a string and made to move in
a vertical circle of radius R with constant speed v.
Find the tension in the string at the lowest and
highest points.

Answer
The forces are as shown in Figure 8.9, At the
lowest point, the net force is T, — mg and so

o

v

T,—mgfmr

giving

Ty = —
)= mg + m—
At the highest point, the net force is mg + T, and so
2
v

L=m——m
2 - I

This shows that the string goes slack unless v* > gr.

mg

Figure 8.9 The tension in the string is different
at different positions of the mass.

It is important to note that, since a centripetal
force is at right angles to the direction of
motion, the work done by the force is zero.
(Recall that W = Fs cos®, and here the angle is
a right angle.)

It is a common mistake in circular motion
problems to include a force pushing the body
away from the centre of the circle: a centrifugal
force. It is important to stress that no such
force exists. A body in circular motion cannot
be in equilibrium and so no force pushing away
from the centre is required.

Supplementary material

Angular momentum

Consider a point mass m which rotates about
some axis with speed v as shown in Figure 8.10.

Figure 8.10 A mass rotating counterclockwise
in a circle has an angular momentum
pointing out of the page.

We define the magnitude of the angular
mamentum of the mass m by

L = mvr

{Angular momentum is a vector but we will not
make use of its vector nature here.) If the mass
moves along a path other than a circle, then the
angular momentum is given by

L=mvb

where b is the pempendicular distance of the axis
from the direction of velocity. In Figure 8.11

the axis goes into the page through P. Since

b= rsiné it follows that L = mvr sinf, where

f is the angle between the velocity vector and
the vector from the axis to the position of the
mass. The units of angular momentum are | s.
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m direction of velocity

P

Figure 8.11 A mass has angular momentum
about an axis through P.

Example question

Qb eI T T I H I 59T
Find the angular momentum of two masses,
each of 2.0 kg, that are separated by 5.0 m
and rotate about an axis along the
perpendicular bisector of the line joining them
with speed v= 7.5 m s~' (see Figure 8.12).

@ e

+ —+

Figure 8.12.

Answer

. =2mvr=75]5.

Questions |

1 A mass moves on a circular path of radius

2.0 m at constant speed 4.0 m s~ (see

Figure 8.13).

(a) What is the magnitude and direction of
the average acceleration during a quarter
of a revolution (from A to B)?

(b) What is the centripetal acceleration of the
mass{

A

Figure 8.13 For question 1.-

2 A body of mass 1.00 kg is tied to a string and
rotates on a horizontal, frictionless table.

(a) If the length of the string is 40.0 cm and
the speed of revolution is 2.0 m s™', find
the tension in the string,

(b} If the string breaks when the tension
exceeds 20.0 N, what is the largest speed
the mass can rotate at?

(c) If the breaking tension of the string is
20.0 N but you wanl the mass to rotate at
4.00 m s~', what is the shortest length
string that can be used?

3 An astronaut rotates at the end of a test

machine whose arm has a length of 10.0 m,
as shown in Figure 8.14. If the acceleration
she experiences must not exceed

5g (g = 10ms™?), what is the maximum
number of revolutions per minute of the arm?

—
10 m

—»

Figure 8.14 For question 3.

4 A wheel of radius R rotates making 1
revolutions per second. The quantity f is
known as the frequency of the motion. Show
that 1/ is the time to complete one
revolution, called the period T of the mation.
Show that the centripetal acceleration of a
point at the rim of the wheel is

a=4xRf?

5 The earth {mass = 5.98 x 10** kg) rotates
around the sun in an orbit that is
approximately circular, with a radius of
1.5 x 10" m.

{a) Find the orbital speed of the earth around
the sun.

{b) Find the centripetal acceleration
experienced by the earth.

(c) Find the magnitude of the gravitational
force exerted on the earth by the sun.

6 (a) What is the angular speed of a mass that

completes a 3.5 m radius circle in 1.24 s¢
(b} What is the frequency of the motion?
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7 What is the centripetal acceleration of a mass

that moves in a circle of radius 2.45 m making
3.5 revolutions per second?

8 What would be the length of the day if the

centripetal acceleration at the equator were
equal to the acceleration due to gravity?
(g=9.8ms2)

9 A loop-the-loop machine has radius R of

18 m (see Figure 8.15).
{a) What is the minimum speed at which a
cart must travel so that it will safely loop

the loop?
(b) What will the speed at the top be in this
case?
R
v="7
e

Figure 8.15 For question 9.

10 Calculate the centripetal force on the earth as

11

12

it rotates around the sun. The mass of the
earth is about 6.0 x 10 kg. The earth arbits
the sun in a circular orbit of radius

1.5 x 10" m in one year.

What is the centripetal acceleration of a
point on the earth at 50° latitude as a result
of the earth’s rotation about its axis?

Express the answer as a fraction of g, the
acceleration due to gravity. What angle to
the true vertical would a mass hanging at the
end of a string make? Take g to be exactly
9.8 ms™".

A horizontal disc has a hole through its
centre. A string passes through the hole and
connects a mass m on top of the disc to a
bigger mass M that hangs below the disc.
Initially the smaller mass is rotating on the
disc in a circle of radius r. What must the
speed of m be such that the big mass stands
still? (See Figure 8.16.)

13

14

M
Figure 8.16 For question 12.

A mass of 5.00 kg is tied to two strings of
equal length, which are attached to a vertical
pole at points 2.0 m apart. As the pole rotates
about its axis, the strings make a right angle
with each other, as shown in Figure 8.17.

Figure 8.17 For question 13.

If the mass makes 2 revolutions per second, find:

(a) the tension in each string;

{b) the speed of revolution that makes the
lower string go slack.

(c) If the mass now rotates at half the speed
you found in part (b), find the angle the
top string makes with the vertical.

A mass moves counter-clockwise along a
vertical circle of radius 4.00 m. At positions A
and B, where the radii make an angle of 45°
with the horizontal (see Figure 8.18), the mass
has speed 4.0 m s~'. At A the speed of the
mass is increasing at a rate of 3.0 ms*
whereas at B the speed is decreasing at a rate
of 3.0 m s~ % Thus, the acceleration of the mass
in each position consists of the centripetal
acceleration (which is directed toward the
centre) and a tangential acceleration whose
magnitude is the rate of change of speed. Find
the magnitude and direction of the acceleration
vector of the mass at positions A and B,
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15

16

Figure 8.18 For question 14,

In an amusement park ride a cart of mass

300 kg and carrying four passengers each of
mass 60 kg is dropped from a vertical height
of 120 m along a frictionless path that leads

into a loop-the-loop machine of radius 30 m.

The cart then enters a straight stretch from A
to C where friction brings it to rest after a
distance of 40 m. (See Figure 8.19.)

120 m /
L 4 \\ -"1 _,-"

Figure 8.19 For question 15.

{a) Find the velocity of the cart at A.

{b) Find the reaction force from the seat of the

cart onto a passenger at B,
{c) What is the acceleration experienced by
the cart from A to C (assumed constant)?

A mass of 5.0 kg is attached to a string of

length 2.0 m which is initially horizontal. The

mass is then released. Figure 8.20 shows the

mass when the string is in a vertical position.
(@) Find the speed of the mass when the string

is in the vertical position.
(b) Find the acceleration of the mass.
(c) Draw the forces on the mass.
(d) Find the tension in the string.

i
initial position of mass

Figure 8.20 For question 16.

17

18

19

A neutron star has a radius of 50.0 km and
completes one revolution every 25 ms.
Calculate the centripetal acceleration
experienced at the equator of the star.

In an amusement park a box is attached to a
rod of length 25 m and rotates in a vertical
circle. The park claims that the centripetal
acceleration felt by the occupants sitting
firmly in the box is 4g. How many revolutions
per minute does the machine make?

A marble rolls from the top of a big sphere as
shown in Figure 8.21. What is the angle ¢
when the marble is about to leave the sphere?
Assume a zero speed at the top.

Figure 8.21 For question 19,
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The law of gravitation

This chapter will introduce you to one of the fundamental laws of physics: Newton's law
of gravitation. The law of gravitation makes it possible 1o calculate the orbits of the planets
around the sun, and predicts the motion of comets, satellites and entire galaxies. Newton's
law of gravitation was published in his monumental Phifosophioe Naturalis Principia
Mathematica, on 5 July 1686. Newton's law of gravitation has had great success in dealing
with planetary motion.

Objectives

By the end of this chapter you should be able to:

» appreciate that there is an attractive force between any two point masses
that is directed along the line joining the two masses, F = G 2%,

« state the definition of gravitational field strength, g = G *

Newton’s law of gravitation where My and M; are the masses of the
attracting bodies, r the separation between

We have seen that Newton's second law implies them and & a new constant of physics

that, whenever a mass moves with acceleration, called Newton's constant of universal

a force must be acting on it. An object falling gravitation. It has the value G = 6,667 =

freely under gravity is accelerating at 9.8 m s~ 10-" Nm* kg‘i. The direction of the force

and thus experiences a net force in the is along the line joining the two masses.

direction of the acceleration. This force is, as we
know, the weight of the mass. Similarly, a
planet that revolves around the sun also
experiences acceleration and thus a force is
acting on it. Newton hypothesized that the
force responsible for the falling apple is the
same as the force acting on a planet as it
revolves around the sun. The conventional
weight of a body is nothing more than the
gravitational force of attraction between that
body and the earth.

This formula applies to point masses, that is to
say masses which are very small (in comparison
with their separation). In the case of objects
such as the sun, the earth, and so on, the
formula still applies since the separation of, say,
the sun and a planet is enormous compared
with the radii of the sun and the planet. In
addition, Newton proved that for bodies which
are spherical and of uniform density one can
assume that the entire mass of the body is

» Newton proposed that the attractive force concentrated at the centre - as if the body is a
of gravitation between two point masses is point mass.
given by the formula
My M, Figure 9.1 shows the gravitational force between
==ty

two masses. The gravitational force is always
attractive.

f2

CHAPTER P R
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Figure 9.1 The mass of the spherical body to the
left can be thought to be concentrated at the
centre.

The force on each mass is the same. This follows
both from the formula as well as from Newton's
third law.

Example questions
()1 T PR L AL TR LA I (L P T TP
Find the force between the sun and the earth.

Answer

The average distance between the earth and the
sun is R = 1.5 x 10" m. The mass of the earth is
5.98 x 10* kg and that of the sun 1.99 x 107" kg.
Thus

F=35%102N

() RN S S t et RS JERTFILEE
If the distance between two bodies is doubled,
what happens to the gravitational force between
them?

Answer

Since the force is inversely proportional to the
square of the separation, doubling the separation
reduces the force by a factor of 4.

We said that the force we ordinarily call

the weight of a mass (i.e. mg) is actually the
force of gravitational attraction between

the earth of mass M, and the mass of the
body in question. The mass of the earth is
assumed to be concentrated at its centre and
thus the distance that goes in Newton's
formula is the radius of the earth, R, (see
Figure 9.2).

Figure 9.2 The gravitational force due to a
spherical uniform mass is the same as that due
to an equal point mass concentrated at the
centre,

Therefore, we must have that

This is an extraordinary result, It relates the
acceleration of gravity to the mass and radius of
the earth. Thus, the acceleration due to gravity
on the surface of Jupiter is

_GM,
= _Rf

Example questions

(7 AT T T T T Re s S TS F R R
Find the acceleration due to gravity (the
gravitational field strength) on a planet 10 times
as massive as the earth and with radius 20 times
as large.

Answer

From
_GM
Rl

we find

_ G(10M,)
T (20R.)?
10G M,
400 R?
1 GM,
40 R?
1

Thus g = 0.25ms™2.
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Q) EETEFIFITIPIIT IS SILS LI DTN SNITIRIFIY
Find the acceleration due to gravity at a height of
300 km from the surface of the earth.

Answer

¥ — —Gh{é
5 (Re+ )

where R. = 6.36 % 10* m is the radius of the
earth and h the height from the surface. We can
now put the numbers in our calculator to

find g =894 ms™?

The order-of-magnitude arithmetic without a
calculator is as follows:

GM,
T (Re+ h)?
6.67 x 107" x 5.98 x 10
(6.68 x 10%)?

Gravitational field strength .

Physicists (and philosophers) since the time of
Newton, including Newton himself, wondered
how a mass ‘knows’ about the presence of
another mass nearby that will attract it. By the
nineteenth century, physicists had developed
the idea of a ‘field’, which was to provide the
answer to the question. A mass M is said to
create a gravitational field in the space around
it. This means that when another mass is
placed at some point near M, it ‘feels’ the
gravitational field in the form of a
gravitational force. (Similarly, an electric
charge will create around it an electric field
and another charge will react to this field by
having an electric force on it.)

We define gravitational field strength as follows.

......

pﬂiutmthernmepertmnmssacpenencad
-byasmallpbintmassmatmatpqmtm '
ﬁnmupam&dhrasnmﬂpﬁntmm
;_5pla¢eﬂ;frdistm:aerfmmamassmls

s GM—"'.

:..Euﬁmgraﬂmﬂmﬂlﬁelﬂsmgthlﬁquf
 themassMis

: s

. meumtsafgmﬁmunnﬂﬁeldmngﬂ:m tg
ks‘i :

If M stands for the mass of the earth, then the
gravitational field strength is nothing more
than the acceleration due to gravity at distance
r from the centre of the earth.

The usefulness of the definition of the
gravitational field strength is that it tells us
something about the gravitational effects of a
given mass without actually having to put a
second mass somewhere and find the force
on it.

The gravitational field strength is a vector
guantity whose direction is given by the
direction of the force a point mass would
experience if placed at the point of interest.
The gravitational field strength around a
single point mass M is radial, which means
that it is the same for all points equidistant
from the mass and is directed towards the
mass. The same is true outside a uniform
spherical mass. This is illustrated in

Figure 9.3.

This is to be contrasted to the assumption of a
constant gravitational field strength, which
would result in the situation illustrated in
Figure 9.4. The assumption of constant
acceleration of gravity (as, for example, when
we treated projectile motion) corresponds to
this case.
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Figure 9.3 The gravitational field around a point
{or spherical) mass is radial.

Figure 9.4 The gravitational field above a flat mass

is uniform.

Example questions

()5 oot s S ST LTS T YYTY

Twa stars have the same density but star A has
double the radius of star B, Determine the ratio of
the gravitational field strength at the surface of
each star.,

Answer

The volume of star A is 8 times that of star B since
the radius of A is double. Hence the mass of A is
& times that of B. Thus

) [T T TSN T S S TR
Show that the gravitational field strength at the
surface of a planet of density p has a magnitude
given by g = 1728,

Answer
We have

it follows that
Gdmp R}
T 3R?
4CTp R
3

Questions

1 What is the gravitational force between:

{a) the earth and the moon;

(b} the sun and Jupiter;

{c) a proton and an electron separated by
107" m?

{Use the data in Appendices 1 and 3.)

2 A mass m is placed at the centre of a thin,
hollow, spherical shell of mass M and radius R
{see Figure 9.5a).

{a) What gravitational force does the mass m
experiencef

{b) What gravitational force does m exert on M?

{c) A second mass m is now placed a distance
of 2R from the centre of the shell (see
Figure 9.5b). What gravitational force does
the mass inside the shell experience!?

(cl) What is the gravitational force experienced
by the mass outside the shell?
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(a) (k)
Figure 9.5 For question 2.

3 Stars A and B have the same mass and the
radius of star A is 9 times larger than the
radius of star B, Calculate the ratio of the
gravitational field strength on star A to that
on star B,

4 Planet A has a mass that is twice as large as
the mass of planet B and a radius that is twice
as large as the radius of planet B. Calculate
the ratio of the gravitational field strength on
planet A to that on planet B.

5 Stars A and B have the same density and star
A is 27 times more massive than star B.
Calculate the ratio of the gravitational field
strength on star A to that on star B,

6 A star explodes and loses half its mass. Its
radius becomes half as large. Find the new
gravitational field strength on the surface of
the star in terms of the original one.

7 The mass of the moon is about 81 times less
than that of the earth. At what fraction of the
distance from the earth to the moon is the
gravitational field strength zero? (Take into
account the earth and the moon only.)

8 Point P is halfway between the centres of two
equal spherical masses that are separated by a
distance of 2 X 107 m (see Figure 9.6). What
is the gravitational field strength at:

[a) point P;
(b} point )¢
P
33 102 K 3% 108 kg
sl 10° m
o Q

Figure 9.6 For question 8.

9 Consider two masses. There is a point
somewhere on the line joining the masses
where the gravitational field strength is zero,
as shown in Figure 9.7. Therefore, if a third
mass is placed at that point, the net force on
the mass will be zero. If the mass is slightly
displaced away from the equilibrium position
to the left, will the net force on the mass be
directed to the left or the right?

displacement

T

equilibrivm position

Figure 9.7 For question 9.



CHAPTER PATRSS

Projectile motion

Galileo is credited with the discovery of the secrets of parabolic motion. He did
experiments with falling bodies, from which he deduced the acceleration due to gravity
and its independence of the body's mass, and discovered that projectiles follow
parabalic paths. Examples of parabolic motion include the paths of a stone thrown into
the air at an angle, a bullet shot from a gun and water sprayed from a hose, The basic
fact here is that every object that falls freely under the action of the earth's gravity
experiences an acceleration g directed vertically down. In what follows, it is assumed
that the earth is flat. This means that we only consider a small part of the earth’s surface
so that it is approximately flat, in which case the acceleration due to gravity is pointing
normally to the horizontal ground.

i

Objectives

! By the end of this chapter you should be able to:

understand parabolic motion as a combination of two simultaneous straight-
line motions, one horizontal and one vertical;

understand that in parabolic motion there is an acceleration in the vertical
direction (due to gravity) but none in the horizontal direction;

derive expressions for maximum height (by setting v, = 0) and maximum
range (y = U) reached by imposing appropriate conditions on the equations;
solve problems of parabolic motion;

draw the velocity and acceleration vectors of the projectile at various points
on its path; ’

appreciate the convenience afforded by the law of conservation of energy in
some parabolic motion problems.

Parabolic moﬁﬂn from rest, the other was launched horizontally

with no vertical component of velocity. We see

Let us begin by looking at what happens when an that the displacements in the y (i.e. vertical)
object is thrown horizontally from some heighth | direction are covered in the same time.

above the ground with some initial velocity. |
Experience tells us that the object will follow a
curved path and will eventually fall to the
ground. What we want to know is how far the
object travels, how long it takes to fall to the
ground, the precise shape of the curved path, etc.

How do we understand this fact? A simple way is
to make use of the concept of relative velocity.
Consider two bodies, one dropped from rest and
the other launched horizontally with velocity v,
From the point of view of a stationary observer
on the ground, body B falls vertically whereas

Figure 10.1 shows the positions of two objects body A follows a parabolic path. Consider now
every 0.2 s: the first was simply allowed to drop the description of the same situation from the
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Figure 10.1 A body dropped from rest and one
launched horizontally cover the same vertical
displacement in the same time,

point of view of another observer on the ground
who moves with velocity ¥ /2 with respect to the
ground. From the point of view of this observer,
body A has velocity v /2 and body B has velocity
- /2, The motions of the two bodies are
therefore identical (except for direction). So this
observer will determine that the two bodies
reach the ground at the same time. Since time is
absolute in Newtonian physics, the two bodies

must reach the ground at the same time as far
as any other observer is concerned as well. (See
Figure 10.2.)

This means that the motion of the body
launched horizontally can be analysed quite
simply because we can separate the vertical
motion from the horizontal motion. Let vy be
the initial velocity of the object in the horizontal
direction. Since there is no acceleration in this
direction, the horizontal velocity component at
all times will be equal to vg

Vx =¥

and the displacement in the horizontal
direction will be given by

x = vyt

In the vertical direction, the object experiences
an acceleration ¢ in the vertically down
direction. Thus, the velocity in the vertical
direction will be given by

vy = —gi

Figure 10.2 The motions of the ball projected horizontally and the ball
dropped vertically from rest are identical from the point of view of the
moving observer. The two balls will thus reach the ground at the same time.
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(we are assuming that positive velocity means
the body moves upward; the acceleration due
to gravity is then negative, or —g) and the
displacement is given by

y=-3gt°
The point of launch is assumed to be the origin,

as in Figure 10.3, so that the initial displacement
is zero,x =0,y =0.

initial horzontal velocity

—y =

Figure 10.3.

Example questions

()1 s S TSP T PSS SR PSSR )
An object is launched horizontally from a height of
20.0 m above the ground, as shown in Figure 10.4.
When will it hit the ground?

¥

*—

B
Figure 10.4.

Answer

The object will hit the ground when y =-20.0 m,
and thus from y = —1gt* we find —20 = —51%,
giving t = 2.0 s. Note that we do not need to
know the actual velocity of launch.

Q2 rarrsssraes iR e s asias s ST IR TS TSI IFF 1L
An object is launched horizontally with a velocity
of 12 ms™', What is the vertical component of
velocity after 2.0 s? What are the coordinates of
the object after 4.0 s?

Answer

The horizontal component of velocity is 12 ms™
at all times. From v, = —gt, the vertical
component is v, = —20 ms~'. The coordinates

after time  are

X = wgl
=12.0x% 4.0
=48 m

and

y=—3gt’
=-5x16
= =80m

Knowing the x and y coordinates as a function
of time allows us to find the shape of the
curved path followed by an object launched
horizontally: from x = vgf we solve for time

t = X and substituting in y = — gt* we find

_1 (1)2
. 25 )

which is the equation of a parabola.

Launch at an arbitrary angle

In the previous section we studied the horizontal
launch of a projectile, In this section we will
study the more general case of launch at an
arbitrary angle. Figure 10.5 shows an object
thrown at an angle of # = 30" to the horizontal
with initial velocity vector ¥y, whose magnitude
is 20 m 5 ', and the path it follows through
the air.

The position of the object is shown every 0.2 s.
Mote how the dots get closer together as the
object rises (the speed is decreasing) and how
they move apart on the way down (the speed is
increasing). It reaches a maximum height of
5.1 m and travels a horizontal distance of 35 m.

As before, the easiest way to analyse what is
going on is to realize that the object is actually
undergoing two motions simultaneously — one
in the vertical direction and another in the
horizontal. Thus, if the object begins at point O
{see Figure 10.6) at{ = 0 and subsequently finds
itself at point P, then we can say that during
this time the object actually moved a horizontal
displacement OX and a vertical displacement
O¥. Note that the time taken to cover the
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Figure 10.5 An object is launched at an arbitrary angle to the horizontal. The path

followed is parabolic,

displacement OX is the same as the time taken
to cover OY. OX and OY are just the components
of the displacement vector of the mass at .

5“ z . = t
e, R el
Y = rEE
1 .'.-J..
1 f»."/ £
= . - iq
: _’___/ ! e

0 5 10 15 20 25 X 30 35

Figure 10.6 The position vector of a point P as an
object executes parabolic motion.

The point of doing things this way is that we
have succeeded in reducing the motion in the
plane into two motions taking place at the
same time on straight lines. Since we know all
about straight-line motion, it means we also
know all about motion in a plane.

Let us then throw an object into the air with
velocity vector Vg (of magnitude vg) at an angle
# to the horizontal. The suffix zero in i is to
remind us that this is the initial velocity of the
object. The component of initial velocity in the
horizontal direction is simply vp cos#.

> At any future time, ﬂ:ehnrizanulwlmtf
:cnmpunentmilbeﬂwsame.thatm

Ve =1 cos

If we call ﬂ'[e d:spl:cementmﬁm
hunzental direction x, then after a time of
[ s goes by

x =yl cosd

On the other hand, in the vertical direction
there is acceleration, namely the acceleration
due to gravity, g. (In our formulae, the
acceleration will be taken to be negative. A
positive velocity means that the mass is moving
up. On the way up, the velocity decreases and so
the acceleration is negative. On the way down,
the velocity is getting more and more negative
and so the acceleration must again be taken to
be negative.)

» The initial velocity in the vertical direction

is ¥ sin ©, so the vertical velocity
- component at any time | after launch is
given by
= yysind — gl
The displacement in the vertical direction,
y, after time { seconds is given by
v =vtsing— zgt*
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Note that we are dealing with displacements
here and not distances. The distance travelled is
the length of the arc of the parabola from O to
wherever the mass finds itself after time (.
Setting # = 0 in these formulae gives the
formulae for a horizontal launch, as in the
previous section.

Unlike the velocity in the horizontal direction,
which stays the same, the vertical velocity is
changing. It begins with the value vgsin@ at
time zero, starts decreasing, becomes zero, and
then keeps decreasing, becoming more and
more negative. At what point in time does the
vertical velocity component become zera?
Setting vy, = 0 we find '

0=wpsind — gt
f o Vosing

The time when the vertical velocity becomes
zero is, of course, the time when the mass
attains its maximum height. What is this
height? Going back to the equation for the
vertical component of displacement we find
that when

{ — vosing
g
v is given by
vosing 1 (vu :;iﬂt!i‘)2
= Vg— Sinéd —
Fmax g 2 q g
_ visin®8
B

This is the formula for the maximum height
attained by the mass. You should not remember
it by heart but rather you should be able to
derive it.

What about the maximum displacement in the
horizontal direction (sometimes called the
range)? At this point the vertical component of
displacement is zero. Setting y = 0 in the
formula for y gives

0 =wot sind — 5 gt*
=tvosing — 5 gt)

and sof =0 and

B 2vgsing

g

The first time [ = 0 is, of course, when the mass
first starts out. The second time is what we

want - the time in which the range is covered.
Therefore the range is

t

2v§ sind cosf
g
_ vgsin26
g
Note, incidentally, that the time it takes to cover
the range is twice the time needed to reach the

maximum height. This suggests that the motion
is symmetric about the highest point.

The maximum value of sin 26 is 1 and this
happens when 28 = 90° (i.e. # = 45°); in other
words, we obtain the maximum range with a
launch angle of 45°. This equation also says that
there are two different angles of launch that
give the same range for the same initial speed.
These two angles add up to a right angle (can
you see why?).

Example questions

()3 TasessesgsrpEEgeseay g Fat T S ST YT EERCI T,
A mass is launched with a speed of 10 m s~ at
(a) 30° to the horizontal;

(b} 0° to the horizontal;

(c) 90° 10 the horizontal.

Find the x- and y-components of the initial velocity
in each case.

Answer

(a) vy = vycoséd

= 10 x cos 30"
=8.66 ms™'
Vy = VpSing
= 10 x sin 30°
=5ms™
b) vi = 10 ms!
v,=0Dms"
€l vi=0
v, =10 ms"’
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O IO TRl P e S PR SRS BT ¥ T,
Sketch graphs to show the variation with time of
the horizontal and vertical components of velocity
of the projectile of example question 3{a).

Answer

See Figure 10.7.

E
¥y fm sl

866

(0,01 is

™ |
v}.!ms -

5.0

(0,00 0.5 ts

Figure 10.7.

Qs :
A mass is launched at 30° to the horizontal with
initial speed 25.0 m s™'. What is the maximum
height obtained?

Answer

The vertical velacity is given by

vy = vpsind — gt

and becomes zero at the highest point. Thus
vip sin @

g
=1.25+%

and so maximum height = 7.82 m by substituting
in the formula for .

Qb SRS L SIS E T E s T8 ik
After what time does the mass in the previous
example question move a horizontal distance of
3.0m?

Answer

X = vplcos#®
and so

30
T 25.0 % cos 30°

t

()7 MSEE I ETITTI T IS SR I E NSy,
For the same mass as in example questions 5 and
6, when is the height of the mass 4.0 m?

Answer

From

y= vplsinf = ;";grz
we find

4.0 = 251 x 0.5 = 5¢°

andso y=4.00 mwhent=038sandt=2.1s.
There are two solutions here since the mass
attains the height of 4 m twice: on its way up and
on its way down.

8 msEnETEoETserse et SHHILIPTIIIIIT
A projectile is launched horizontally from a height
of 45 m above the ground. As it hits the ground,
the velocity makes an angle of 60° to the
horizontal. Find the initial velocity of launch.

Answer

The time it takes to hit the ground is found from
y = —5gt* (here # = 0 since the launch is
horizontal) and so

—45 = -5¢

= l=135

Thus, when the projectile hits the ground

vy=0-10x3
=—30ms""
Hence
- v,
tan 60° = | X
Vi
30
Vy =
tan 60°
=17 ms™
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The shape of the path

(The proof is not required for examination
purposes.) The last thing that remains to be
done here is to figure out the shape of the path
the object follows in the air. We can do this very
easily by concentrating on the formulae for
displacement in the x and y directions:

x = volt cos @
y=votsing — 3 gt*

Using the first equation we solve for time to

NS S TORPCE
findt = s and substituting in the

expression for y we find

=¥ sin:‘?( : l ( = '
AL vocosa ) ~ 29 rgcusﬁ?)

q 2
o
2v5 cos- 0

y=xtang —
which is the equation of a parabola.

Use of energy conservation

In some problems we are asked to find the speed
of a projectile at some point along its path. If
speed is all that is being asked for, a very simple
method using the law of conservation of energy
can be used. Consider the following example. A
ball is launched at 12 m s ' at an angle of 60° to
the horizontal. It lands on the roof of a building
5 m high (see Figure 10.8). What is the speed of
the ball on landing?

@

5m

Figure 10.8 A ball is launched at ground level and
lands on the roof of a building.

Let us use conservation of energy first. At
launch, the total energy of the mass is
E = ymv? and on landing it is F- = Jmu?® + mgh.

Equating the two results in

ymu? + mgh = Jmy®

= u? =v? - 2gh
This gives
W =144-2x10x%x5
=44
=u=663ms"’

Another method of solution uses the equations of
projectile motion and is much more complicated.
We must find the vertical component of velocity
when the vertical displacement of the ball is 5 m:
we use y = vot sinf — } gt? to find the time

when the vertical displacement becomes 5 m.

The result is found from:

5= 121 sin 60° — 5t°
= 51 = 10392t +5=10

The roots are 0.756 s and 1.322 5. At these times,
the vertical velocity component is

vy =vosinf — gt
= 12s5in 60" — 10t
=4+283ms™'

The speed on landing is thus given by

u=,/vi+v}
=+/2.832+ 67

=6.65m 5_1

The advantage of the energy conservation
method is clear.

Effect of air resistance forces

Figure 10.9 shows the effect of air resistance
on the path of a projectile launched with
speed 200 m s ' at 60° to the horizontal. The
path in black dots corresponds to the case of
zero air resistance. (The position is shown
every (.8 s.) A similar projectile launched with
the same velocity but with an air resistance
force follows the path in open circles. Shown
here is the case of a resistance force of
magnitude proportional to the speed and
directed opposite to the velocity. We see that
with air resistance:
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» the path is no longer parabolic; 3 Aball is kicked horizontally with a speed of
=1 § o
« the maximum height and range are less 5.0ms from the roof u_fa house 3 m high.
has withiout aio sealatante: | {a) When will the ball hit the ground?
’ ' (b) What will the speed of the ball be just

= the angle at which the projectile impacts before hitting the ground?

the ground is steeper.

4 An object is launched horizontally with a
speed of 8.0 m s™' from a point 20 m from the
ground.

H r— (a) How long will it take the object to land on
1400 - g ", the ground?
1200 _-' ". {b) What is the speed of the object 1 s after
1000+ N ". launch?
800 % 53"’:’____}_““ 3 % {c} What angle does the velocity make with
: :ﬁ.: q ) the horizontal 1 s after launch?
. s | B s (d} With what velocity does the object hit the
BN 7 o -- _ ground?
200 +-2 o .
3‘: PPN | PP S <) T DR (- —_ 5 Two objects are thrown horizontally with the
0 500 1000 1500 2000 2500 3000 3500 same speed (4.0 m 57') from heights of 4.0 m
Figure 10.9 The motion of a projectile without air and 8.0 m, as shown in Figure 10.11. What
resistance (black dots), and with a resistance distance will separate the two objects when

force directed opposite to the velocity and of | both land on the ground?

magnitude proportional to the speed (open
circles).
& O_"
20m

Questions O
1 An arrow is shot horizonally towards point O, 40m

which is at a distance of 20.0 m. It hits" point

P 0.10 s later. {See Figure 10.10.) ' :

{a) What is the distance OP? Figure 10.11 For question 5.

(b) What was the arrow’s initial velocity?

6 With what speed should the object at 4.0 m
height in Figure 10.11 be launched if it is to
land at the same point as the object launched
from8.0mat4.0ms"'"?

7 Aplane flying at a constant speed of 50.0 m s
and a constant height of 200 m drops a package
of emergency supplies to a group of hikers. If
the package is released just as the plane flies
over a huge fir tree, find at what distance from
the tree the package will land.

— O

Figure 10.10 For question 1.

8 The longest distance an athlete can throw the
2 Aball rolls off a table with a horizontal speed discus is L. How high would the same athlete
2.0 ms™'. If the table is 1.3 m high, how far | be able to throw the discus vertically?
from the table will the ball land? | {Assume, unrealistically, that the speed of
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10

1

12

13

14

15

throwing is the same in both cases and ignore
air resistance.)

In a loop-the-loop cart, as shown in Figure
10.12, a passenger drops their keys when
at the highest point. The cart is moving at
6m s " and is 8 m from the ground. Where
will the keys land?

—
¥

Figure 10.12 For question 9.

For an object thrown at an angle of 40° to
the horizontal at a speed of 20 m s™', draw
graphs of:

(a) horizontal velocity against time;

(b} vertical velocity against time;

{c) acceleration against time.

What is the highest point reached by an
object thrown with speed 4.0 ms™' at 40° to
the horizontal?

A stone is thrown with initial speed 6.0 m s™'

al 357 to the horizantal. What is the direction
of the velocity vector 1 s later?

An object is thrown with speed 20.0 ms™' at

an angle of 50° to the horizontal. Draw graphs
to show the variation with time of:

{a) the horizontal displacement;

(b) the vertical displacement.

An object of mass 4.0 kg is thrown with speed

20.0m s at an angle of 30° to the

horizontal. Draw graphs to show the variation

with time of:

(a) the gravitational potential energy of the
body;

(b) the kinetic energy of the body.

A cruel hunter takes aim horizontally at a

monkey that is hanging from the branch of a

tree, as shown in Figure 10.13. The monkey

lets go of the branch as soon as the hunter

pulls the trigger. Treating the monkey and the

Figure 10.13 For question 15,

bullet as point particles, determine if the
bullet will hit the monkey.

16 Aball is launched horizontally from a height
of 20 m above ground on earth and follows
the path shown in Figure 10.14. Air resistance
and other frictional forces are neglected.

The position of the ball is shown every (.20 s.

{a) Determine the horizontal component of
velocity of the ball.

(b) Draw the net force on the ball at t = 1 s.

(c) The ball is now launched under identical
conditions on the surface of a planet
where the acceleration due to gravity is
20 ms™?, Draw the position of the ball on
Figure 10.14 at time intervals of 0.20 s.

¥im

* 1 /m
5 10 15 20

Figure 10.14 For question 16.

17 A ball is launched from the surface of a
planet. Air resistance and other frictional
forces are neglected. The position of the ball
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is shown every 0.20 s in Figure 10.15. Use

this diagram to determine:

{a) the components of the initial velocity of
the ball;

{b) the angle to the horizontal the ball was
launched at;

(c) the acceleration due to gravity on this
planet.

(d) Draw two arrows on Figure 10.15 to
represent the velocity and acceleration
vectors of the ball at t =1 s.

(&) The ball is now launched under identical
conditions from the surface of a different
planet where the acceleration due to
gravity is twice as large. Draw the path of
the ball on Figure 10.15.

0

% 1 /m
10 20 a0 40 50 6

Figure 10.15 For question 16.

HL only

18 A soccer ball is kicked so that it has a range

19

of 30 m and reaches a maximum height of
12'm. What velocity (magnitude and
direction) did the ball have as it left the
footballer’s foot?

A stone is thrown with a speed of 20,0 m s
at an angle of 48° to the horizontal from the
edge of a cliff 60.0 m above the surface of the
sea.

{a) Calculate the velocity with which the
stone hits the sea.

(b) Discuss qualitatively the effect of air
resistance on your answers to (al.

20 A projectile is launched with speed v, at the

21

foot of an inclined plane at an angle of # to

the horizontal, as shown in Figure 10.16.

The inclined plane makes a smaller angle ¢

with the horizontal. Show that the projectile

will land a distance d up the plane given by
2v3 cos @ sin(d — ¢)

Figure 10.16 For question 20,

d

A ball is kicked with a velocity of 5.0 ms '
up an inclined plane that makes an angle of
30° to the horizontal. The ball’s velocity
makes an angle of 25° to the base of the
incline. (See Figure 10.17.) What is the
shape of its path? Explain. Find how high on
the incline the ball will get.

307
Figure 10.17 For question 21.

22 The maximum height reached by a projectile

is 20 m. The direction of the velocity 1.0 s
after launch is 20°; find the speed of launch.
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Motion in 3
gravitational field

Newton's law of gravitation makes it possible to calculate the orbits of planets, comets,
satellites and entire galaxies. The details of the mation of the planets were discovered by
observation by Kepler, whose three laws can be seen to be a direct consequence of the
gravitational law of attraction and Newton's laws of mechanics. Kepler's laws were
published in 1619 in a book called the Harmeny of the World, nearly 70 years before
Newton published his work. In ancient times, Ptolemy constructed an involved system in
which the sun and the planets orbited the earth in perfectly circular paths. When
observations did not agree with the assumed circular paths, Ptolemy and his successors
asserted thal planets move along additional smaller circular paths at the same time that
they complete the orbit. This elaborate theory of epicycles has no foundation in physical
principles and is a good example of atlemplts to explain physical phenomena without an
understanding of the underlying principles. The Ptolemaic world view prevailed for
centuries until Copernicus, early in the sixteenth century, asserted that the sun was at the
centre of the motion of the planets in the solar system. Newlon's law of gravitation has
had great success in dealing with planetary motion but cannot account for some small
irregularities, such as the precession of the orbit of Mercury and the bending of light near
very massive bodies. In 1915, Einstein introduced the general theory of relativity, which
replaced Newton's theory of gravity and resolved the difficulties of the Newtonian theory.

Objectives

By the end of this chapter you should be able to:

state the definitions of gravitational potential energy, £, = —G*™ and
gravitational potential, V = —G*;

understand rhat the work done as a mass m is moved across two points
with gravitational potential difference AV is W = mal/;

understand the meaning of escape velocity, and solve related problems
using the equation for escape speed from a body of mass M and radius £:

F2GM .

TR
solve problems of orbital motion using the equation for orbital speed at a
distance r from a body of mass M v = /&2

understand the term weightlessness.

Vese = y

et
|

A

pepliaite

-

1
£
Ll
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Gravitational potential energy

Consider a mass M placed somewhere in space,
and a second mass m that is a distance R from
M. The two masses have gravitational potential
energy, which is stored in their gravitational
field. This energy is there because work had to
be done in order to move one of the masses, say
m, from a position very far away (infinity) to the
position near the other mass. (See Figure 11.1.)
The work that was done by the agent moving
the mass went into potential energy.

infinitely far @

Figure 11.1 Work is being done in bringing the
small mass from infinity to a given position
away from the big mass. This work is stored as
potential energy.

Supplementary material

The gravitational force is not constant but
decreases as the separation of the masses
increases, so we cannol straightforwardly
compute the work done. Using calculus, the
total work done in moving the mass from infinity
to R is

R
W= f Gh:mdr
£

r
GMm|"
W=
r -
GMm
W= ———0
R

» This work is energy that is stored in the
gravitational field of the two masses and is
called the gravitational potential energy of
_ the two masses when they are separated by
adistance K: S

A satellite's total energy as it orbits the earth is
the sum of its kinetic and gravitational
potential energies:

12 GMm

E = smv*° -

This expression simplifies if we use Newton's
law of gravitation and the second law of
mechanics

Gﬁi}l =J'T]‘}:-
r r
:?112= _M
r
o F _GMm
KT T
s0 that
- GMm
a 2r
or
E=—1m?

Figure 11.2 shows the kinetic energy Fy = %32,

potential energy E, = —“* and total energy
E =~ of a mass of 1 kg in orbit around
the earth, as a function of distance from the
earth's centre. This distance is measured in
terms of the earth's radius R.

energy/MJ
& -
- B | {
. [ SHESH \_\‘H | I I SR
F B I
L P |
1] - I L 3 i | Lo 4_--_1-;-_:_.1-__'-.-'_-‘_?2 R
-20} /.--' e AR B
whsiy ! '
¥ // i HH
=40} C I | T
‘ﬂ}Azl/i s 3gkxd mun

Figure 11.2 Graphs of the kinetic, potential and
total energy of a mass of 1 kg in circular orbit
around the earth.

Related to the concept of gravitational potential
energy is that of gravitational potential, V. The
gravitational potential is a field, because it is
defined at every point in space, but unlike the
gravitational field strength, it is a scalar quantity.
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If we know that a mass, or an arrangement of
masses, produces a gravitational potential /' at
some point in space, then putting a mass m at
that point means that the gravitational
potential energy of the mass will be £, =mV/.

If a mass m is positioned at a point in a
gravitational field where the gravitational
potential is V7 and is then moved to another
point where the gravitational potential is 5,
then the work that is done on the mass is

W =m(Vs — V)
=mAV
Example questions

O T T S ST T SR SRR E]
The graph in Figure 11.3 shows the variation of
the gravitational potential due to a planet with
distance r. Using the graph, estimate:

(a) the gravitational potential energy of an 800 kg
spacecraft that is at rest on the surface of the
planet;

(b} the work done to move this spacecraft from
the surface of the planet to a distance of four
planet radii from the surface of the planet.

{a) On the surface of the planet r = R, or
r/R =1, and from the graph V =
—5% 10% |kg™'. Hence

Ep,= my
= 800 x (=5 x 10%
=-4x10")

{b) When the distance from the surface is four
planet radii, r/ R = 5 and the potential there is

V =—1x10°Jkg™'. Hence
W=maV

=800 % (=1 x 10°* + 5 % 10%)
=32x10")

()2 A T TR S VS NI ST IR LA
Figure 11.4 shows the variation of the
gravitational potential due to a planet and its
moon with distance r from the centre of the
planet. The centre-to-centre distance between the
planet and the moon is d. The planet's centre is at
r = 0 and the centre of the moon is at r = d.

Fﬁﬂﬁ Jkg! 02 0.4 0.6 0.8 L0
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What is the minimum energy required so that a
500 kg probe at rest on the planet’s surface will
arrive on the moon?

Answer

The probe will arrive at the moon provided it has
enough energy to get to the peak of the curve.
Once there, the moon will pull it in. On the
surface of the planet V = —390 x 10° |kg ™" . At
the peak the potential is V = —40 x 10° J kg™
Hence

W=maV
= 500 x (=40 x 10" + 390 x 10°).
=1.75%10"]

Escape velocity

The total energy of a mass m moving near a
large, stationary mass M is

. GMn
E = ymv? — !

where v is the speed of the mass when at a
distance r from M. (If VM is also free to move,
then the total energy would have to include a
term 3Mu?, where u is be the speed of M. This
complicates things so we assume that M is held
fixed.) The only force acting on m is the
gravitational force of attraction between M and
m. Suppose that the mass m is launched with a
speed vy away from M. Will m escape from the
pull of M and move very far away from it? To
move very far away means that the distance
between M and m is so large that it is
practically infinite. Then the law of energy
conservation states that

Fmvy — {T—m = MV,

The left-hand side of this equation represents
the total energy E (kinetic plus potential) of the
mass m at the point of launch, a distance R
from the centre of M, and the right-hand side is
the total energy of the mass at infinity, where
the potential energy is zero. Thus, if the mass m

is to escape from the pull of M, it must have a
total energy that is either zero or positive. If

E =0, then the mass m makes it to infinity and
just about stops there, v = 0. IfE = 0, then m
not only gets to infinity but is also moving
there with speed v, given by the expression
above. If, on the other hand, £ < 0, then the
mass cannot make it to infinity; it is forever
trapped by the pull of M. So

» F = (: mass escapes and never returns;

» [ <= 0: mass moves out a certain distance but
returns — mass is trapped;

» [ = 0: the critical case separating the other
two — mass just barely escapes.

This is a general result: whenever the total
energy of a mass is negative, that mass is
trapped by the attraction of whatever is
causing the total energy to be negative. Here it
is gravity that is responsible. Later on we will
see that the total energy of the electron in its
orbit around the atomic nucleus is also
negative. There it is the electrical force that is
responsible for E < 0. The quarks inside
protons also have E < 0. The strong nuclear
force is the reason for that.

Back to gravitation again. What must the
smallest launch velocity be for a mass to escape
the pull of the earth?
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Using the fact that g = %% we see that the
escape velocity can be rewritten as

= 2gR.

where g is the acceleration due to gravity at the
surface of the earth. The numerical value of
this escape velocity is about 11.2 km s ™',

Vesc

The order-ofmagnitude arithmetic without a
calculator is as follows:

JEFM

2 % 6.67 x 10-1 x 598 x 1024
6.38 x 10°

‘/zx?xaxm?

=2 x7x 107

~12x 10° ms™!

In practice, in order to escape, a mass must
overcome not only the pull of the earth but also
the pull of the sun and the big planets. This
means that the escape velocity from the earth is
somewhat larger than 11.2 km s ', This
discussion does not apply to powered objects
such as rockets; it applies only to objects
launched from the earth like cannon balls. In
other words, it applies to ballistic motion.

i

Example questions
Q3
The inevitable example! What must the radius of
a star of mass M be such that the escape velocity
from the star is equal to the speed of light, ¢?

Answer

Lsing

2GM
V=4 ——
R

with v = ¢, we find

R 20M
l.'.""
Since nothing can exceed the speed of light, the

result above states that if the radius of the star is

equal to or less than the value above, nothing
can escape from the star. It is a black hole. The
interesting thing about this formula is that it
correctly gives the radius of the black hole even
though Newton's law of gravitation, which we
used, does not applyl When dealing with very
massive objects, Newton’s law has to be replaced
by Einstein's law of gravitation. Surprisingly,
though, the answer is the same. This radius is
called the Schwarzschild radius of the star.

Q'I FREF R TR R R T 1 L T TR TN SR
Compute the Schwarzschild radius of the earth
and the sun.

Answer

For the sun

20M
2

L

2% 6.67 x 107" x 2 x 103

(3 = lﬂ“}z
=3x108m
Similarly, for the earth K, = 8.86 mm. This shows

that both the earth and the sun are far from being
black holes!

_Qrbital motion

The law of gravitation combined with
Newton's second law of mechanics allows an
understanding of the motion of planets
around the sun as well as the motion of
satellites around the earth. The motion of an
object that is attracted and bound to a much
heavier mass is, according to the law of
gravitation, necessarily an ellipse or a circle.
This follows because the law of gravitation is
an inverse square law: F = “4 No other
form of the law of graw‘tatmn {except for a
Hooke's law type force, F =kr) would lead to
closed orbits as observed for the planets.
Elliptical orbits with the sun at the focus of
the ellipse is what Kepler deduced (Kepler's
first law) by analysing the observations made
by Tycho Brahe. Newton's law of gravitation
and his second law of mechanics provide a
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theoretical understanding of Kepler's
conclusions.

Orbital speed

Consider a planet of mass m in a circular orbit of

radius r around the sun, as shown in Figure 11.5.
The force on the planet is the gravitational force

between the mass of the sun and the mass of the

planet, that is

_GMm

Fe""y

Figure 11.5.

Equating the force with the product of mass
times acceleration (the acceleration here is
centripetal) we get

GMm 2
rZ " r
; oM
=pi=—

This formula gives the velocity of the planet
when it is in an orbit of radius r. For satellites,
M stands for the mass of the earth, and this
formula shows that the closer the satellite is to
the earth, the larger its speed has to be

(Figure 11.6 shows this relationship as a graph).

wikm 57!
EE— e e ———— T
i 5 |

6 - \ |
4 :_I ] _h-\‘.""\-_ T

I SRR e ==
2

* il

] 2 4 f b 10

Figure 11.6 The speed of a satellite in circular
orbit around the earth. The distances are from
the earth's centre in terms of the earth's radius.

MNote that the speed does not depend on the
satellite's mass.

Example questions

05 I ST NP PSS eSS L T TTYITY
Evaluate the speed of a satellite in orbit at a
height of 500 km from the earth’s surface and a
satellite that just grazes the surface of the earth.

| (Take the radius of the earth to be 6.38 % 10° m.)

Answer

The speed is given by

. GM
Vo= —
-
667 x 107" x 5.98 x 102
N 6.88 x 10°

= v=76x10 ms!

For a grazing orbit, using the same method

v=79x10" ms™

(i FrofEses Pl IS TI I SO S GLEETET

| This problem is known as the ‘satellite paradox’.

A satellite in a low orbit will experience a small

frictional force (due to the atmosphere) in a

direction opposite to the satellite’s velocity.

{a) Explain why the satellite will move into a
lower orbit closer to the earth’s surface.

{b) Deduce that the speed of the satellite will
increase,

{c) Explain how a resistance force actually
increases the speed of the satellite {this is the
origin of the ‘paradox’).

Answer

{a} Since there is a frictional force acting, the
satellite’s total energy will be reduced. The total
energy of a satellite of mass m in a circular

| orbit of radius r around the earth of mass M is

“GMm
2r

A reduced total energy thus means a smaller
raclius, i.e. the satellite comes closer to the
earth by spiralling inwards.

{b) The speed of the satellite in a circular orbit is
given by

‘ [GM
v=,—
r

E =
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5o we see that, as the satellite comes closer to
earth, its speed increases.

{c) The resolution of the ‘paradox’ rests on the
fact that, as the satellite begins to spiral
towards the earth, its velocity is no longer at
right angles to the force of gravity (which is
directed towards the centre of the earth).
Therefore the forces on the satellite in the
direction of the velocity are not just the
frictional force (opposite to the velocity) but
also the component of the gravitational force
(see Figure 11.7). Thus,

Fsing = CMm sin@

A detailed analysis shows that the magnitude
of this component is approximately double
that of the frictional force. Hence, the satellite
increases its speed even though a frictional
force opposes the motion because the
tangential net force on the satellite is, in fact,
in the direction of the velocity.

-

friction _ .-

gravitational
force

of motion

Figure 11.7.

Period of motion

If the time taken for one revolution of the
satellite or planet is T, then we must have
V= 2-}5 So, substituting in the formula for
speed we find

(Y o

T o
: 42
'l|2__' ik

= UMr

*‘ﬁéﬂiﬁwpﬁnéww;\&mmﬁ&-mg

i::iﬁa: ______
,_manmmaﬂﬁn ik .7'

-.-1-a-| A e

For elliptical orbits, R should be replaced by the
semi-major axis of the ellipse or (approximately)
by the average distance of the planet from the
sun.

lementary material

Kepler's second law states that planets sweep
out equal areas in equal times. This law also
follows from Newton's law of gravitation and
Newton's laws of mechanics.

Weightlessness

Consider an astronaut of mass
m in a spacecraft in orbit
around the earth a distance r
from the earth’s centre (see
Figure 11.8).

The forces on the astronaut are
the reaction force N from the
floor and his weight W (i.e. the
gravitational force from the
earth). The net force on the
astronaut is

Figure 11.8.
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and so
2
GMm N= mV—
i r
Mm pl
= N=0GC- - IN—

r

= —(Gﬂ —I"z)
r r

But the speed of the astronaut is given by

ve = @. which implies that N = (. Thus, the
astronaut experiences no reaction forces from
the floor and so ‘feels’ weightless.

Looked at in a simpler way, the astronaut is
falling freely but so is the spacecraft, hence there
are no reaction forces. At a distance of 300 km
from the earth’s surface, gravity is not
negligible. There is a force of gravity on the
astronaut but no reaction force from the
spacecraft floor.

Equipotential surfaces

As we have seen, the gravitational potential at a
distance r from the centre of a spherical
uniform mass M is given by

i — S
r

We may therefore consider all the points in
space that have the same potential.

From the formula above, it follows that those
points are all at the same distance from the
centre of the mass, and so lie on a sphere
whose centre is the same as that of the
spherical mass. A two-dimensional
representation of these surfaces of constant
potential is given in Figure 11.9. They are
called equipotential surfaces.

> A cquipanial sufuce consits o those
- points dathavethe same potencal. ...

-l - b

Similarly, we may construct the equipotential
surfaces due to more than one mass. Figure
11.10 shows the equipotential surfaces due to
two equal masses centred at the points with

P L e Ty,
-1.0 .5 0 0.5 1.0

Figure 11.9 Equipotential surfaces due to one
spherical mass at the origin of the axes. The
difference in potential between any two
adjacent surfaces is the same,

coordinates (—0.5,0) and (+0.5,0). The shape of
the surfaces is no longer spherical. (Very far
from both masses, the equipotential surfaces
tend to become spherical because, from far
away, it looks as if we have one body of mass
equal to twice the individual masses.)
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Figure 11.10 The equipotential surfaces due to two
equal masses.
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Figure 11.11 shows the equipotential surfaces
for two unequal masses (the mass on the right
is double the other).
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Figure 11.11 The equipotential surfaces due to two
unequal masses.

There is a connection between the
gravitational potential and the gravitational
field, which is explained in the following
paragraphs. This mathematical connection
also translates to a relation between
equipotential surfaces and gravitational field
lines as we will soon see.

Consider two equipotential surfaces a distance
Ar apart. Let AV be the potential difference
between the two surfaces. The situation is
shown in Figure 11.12. We want to move the

mo

Ar
«-—r

Figure 11.12 A point mass m is to be moved from
one equipotential surface to the other.

point mass m from one equipotential surface to
the other.

We know that this requires an amount of work
W given by

W=mAV

But we may also calculate the work from W =
force % distance. The force on the point mass is
the gravitational force F = mg, where g is the
magnitude of the gravitational field strength at
the position of the mass m. Assuming that the
two surfaces are very close to each other means
that g will not change by much as we move
from one surface to the other, and so we may
take g to be constant. Then the work done is
also given by

W= (mg ) Ar

Equating the two expressions for work done
gives
AV

=&

This gives the magnitude of the gravitational
field as the rate of change with distance of the
gravitational potential.

A more careful treatment, based on calculus,
gives the more precise result:

__dv
9=""7r

This means that the gravitational field is the
negative derivative of the gravitational
potential with respect to distance. The minus
sign is not important for our purposes here.

Consider again Figure 11.9. Recall that adjacent
equipotential surfaces have the same potential
difference, and notice that as we move away
from the mass the surfaces are further apart.
Using
AV

9= Ar
implies that the magnitude of the gravitational
field strength is decreasing (since Al is the
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same and Ar is getting larger). The following is
also true,

# If we have a graph showing the variation
with distance of the gravitational
potential, the slope (gradient) of the graph
is the magnitude of the gravitational field
strength.

Another implication of this relation is that
equipotential surfaces and gravitational field
lines are normal (perpendicular) to each other.
We already know this for the case of a single
mass: the field lines are radial lines and the
equipotential surfaces are spheres centred at
the mass. The two are normal to each other, as
shown in Figure 11.13.

field line

equipotential

Figure 11.13 Equipotential surfaces and field lines
are at right angles to each other.

The point, though, is that this is generally
true for all shapes of field lines and
equipotential surfaces. This means that
knowing one set of lines or surfaces, we can
find the other.

Supplementary material

The binary star system

(This section is not required for examination
purposes but will be useful to those who study
the astrophysics option.)
Two stars can orbit around each other in what
is called a binary star system. The orbit of
each star can be an ellipse but we will
consider here the much simpler case of
circular orbits. Consider two stars of mass
M, and M. They attract each other with the
gravitational force
My

F=G -—él—z
where d is the separation of their centres of
mass (see Figure 11.14).

- O

Figure 11.14 The two stars in the binary star
system attract each other.

The centre of mass of the two stars is not acted
upon by any external forces and is thus moving
in a straight line with constant speed. Without
loss of generality, we may consider the speed to
be zero, in which case it follows that the two
masses orbit the common centre of mass. Taking
the orbits to be circular, the orbit radii (i.e. the
distances of each mass from the centre of mass)
are given by
My
T M+ M;

Myd
My + M,

1
Ry=

See Figures 11.15 and 11.16.
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Figure 11.15 The two slars orbit their centre of
mass.
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Figure 11.16 The orbits of the two stars,

The speeds of rotation can be found from

=% VT=GM‘;:E1
GM(;:.*I;:M?%% |
= vﬁ:GMt;fz :
!
and thus I

s aMa Mad: I
: d2 My + Ms
__ GMj
M, + M)
3 My  Md
R e
_ GM}
d(M; + M3)

The common period of rotation is therefore
found from

2aR Y
PR
; _-_( Vi )

2 M2d?
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e 4 2d?

—G(M; + My)

This shows that if one mass is much larger than
the other, then the formula for T reduces to the
familiar one from Kepler's third law.

The total energy of the binary star system is
given by

1 1 My Mo
E'==—Mjpvi+—Mivi— G——=
TR L d
1 GM?2
e et o
2 d(M; + M3)
1 GM?2 My Ms
—M ! =
SN M) d
_!GM.M;( M, ” M 2)
S (My+ Mz) (M) + My)
that is
1GMIM2
Bl
2 o

If the binary star system loses energy, for
example because of gravitational radiation, then
the energy decreases and thus the separation of
the two stars, d, decreases as well. This means
that each star now moves faster and the
rotational period decreases. This decrease in
the rotational period of a binary star system has
been observed and is indirect evidence for the
existence of gravity waves.

Questions

1 Show by applying Newtan’s law of gravitation
and the second law of mechanics that a
satellite (or planet) in a circular orbit of radius
R around the earth (or the sun) has a period
{i.e. time to complete one revolution) given by

7 o 4ripd
T GM

where M is the mass of the attracting body
{earth or sun). This is Kepler's third law.

2 Show that a satellite orbiting the earth (mass
M) in a circular orbit of radius r and angular
velocity w satisfies

. GM
r = ———
i

3 What is the speed of a satellite that orbits the
earth at a height of 500 km? How long does it
lake to go around the earth once?
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4 A satellite that afways looks down at the same

w1

spot on the earth’s surface is called a
geosynchronous satellite. Find the distance of
this satellite from the surface of the earth.
Could the satellite be looking down at any
point on the surface of the earth?

{a) What is the gravitational potential energy
stored in the gravitational field between the
earth and the moon{

{b) What is the earth’s gravitational potential
at the position of the moon?

{c) Find the speed with which the moon orbits
the earth. {Use the data in Appendix 3.)

6 A spacecraft of mass 30 000 kg leaves the

earth on its way to the moon. Plot the
spacecraft’s potential energy as a function of
its distance from the earth’s centre.

{a) What is the gravitational potential at a
distance from the earth’s centre equal to
5 earth radii?

(b} What is the gravitational potential energy
of a 500 kg satellite placed at a distance
from the earth’s centre equal to 5 earth
radii?

Figure 11.17 shows cross-sections of two satellite

orbits around the earth. (To be in orhit means

that only gravity is acting on the satellite.)

Discuss whether either of these orbits is possible.

orbit |

equator

orhit 2
Figure 11.17 For question 8.

In the text it was calculated that the acceleration
due to gravity at a height of 300 km above the
earth’s surface is far from negligible, yet
astronauts orbiting in the space shuttle at such
a height feel weightless. Explain why.

HL only

10 Earlier in the topic of mechanics we used the

expression mgh for the gravitational potential
energy of a mass m. This expression is only
approximate. Show, by using U = — &M%,
which is the correct expression, that the
difference in gravitational potential energy of
a mass on the surface of the earth and at a
height h from the earth’s surface is indeed mgh
provided h is small compared with the radius
of the earth. (Use the binomial expansion.)

Figure 11.18 shows the variation of the
gravitational force with distance. What does
the shaded area represent?

Figure 11.18 For question 11.

12 Figure 11.19 shows the variation with distance

of the gravitational potential (in terajoules per

kilogram) due to a planet whose radius is

2.0 % 10° m,

{a) Calculate the mass of the planet.

(b) Show that the escape speed from the surface
of the planet is veee = v =2V, where Vis the
gravitational potential on the planet’s
surface.

ic) Use the graph to determine the escape
speed from this planet.

{d) How much energy is required to move a
rocket of mass 1500 kg from the surface of
the planet to a distance of 1.0 x 10® m
from the centre?

{e) A probe is released from rest at a distance
from the planet’s centre of 0.50 x 10® m
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and allowed to crash onto the planet’s
surface. With what speed will the probe hit
the surfacet?
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Figure 11.19 For question 12.
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13 Figure 11.20 shows the variation with distance

from the centre of the planet of the

gravitational potential due to the planet and

its moon. The planet's centre is at r = 0 and

the centre of the moon is at r = 1. The units

of separation are arbitrary. At the point where

r = 0.75 the gravitational field is zero.

{a) Determine the ratio of the mass of the
planet to that of the moon,

(b) With what speed must a probe be launched
from the surface of the planet in arder to
arrive an the surface of the moon?
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Figure 11.20 For question 13.

14 Prove that the total energy of the earth (mass

m) as it orbits the sun (mass M) is £ = — tmv*
or E = =S4 \where ris the radius of the

earth’s circular orbit. Calculate this energy
numerically.

15

16

17

Figure 11.21 shows two identical satellites in
circular orbits. Which satellite has the larger:
{a) kinetic energy;

{b) potential energy;

{c) total energy?

Figure 11.21 For guestion 15.

Show that the total energy of a satellite of
mass m in orbit around the earth {mass M) at a
distance from the Earth's centre of 5 earth

radii is given by F = — &

1ng -

The total energy of a satellite during launch
from the earth's surface is £ = — %’%*—'—’, where

R is the radius of the earth. It eventually settles
into a circular orbit: calculate the radius of
that orbhit.

18

19

What is the escape velocity from the earth if
the launch takes place not on the surface of
the earth but from a space station orbiting
the earth at a height equal to R.? You must
find the velocity of launch as measured by
an observer on the space station. The
launch takes place in the direction of
motion of the space station.

A satellite is in a circular orbit around the
earth. The satellite turns on its engines so that
a small force is exerted on the satellite in the
direction of the velocity. The engines are on
for a very short time and the satellite now
finds itseli in a new circular orbit.
{a) State and explain whether the new orbit is
closer to or further away from the earth.
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(b) Hence explain why the speed of the
satellite will decrease,

(c) It appears that a force, acting in the
direction of the velocity, has actually
reduced the speed. How do you explain
this observation?

20 Figure 11.22 shows a planet orbiting the sun
counter-clockwise, at two positions — A and B.
Also shown is the gravitational force acting on
the planet at each position. By decomposing
the force into components normal and
tangential to the path (dotted lines), explain
why it is only the tangential component that
does work. Hence explain why the planet will
accelerate from A to P but will slow down
from P to B.

Figure 11.22 For question 20.

21 Figure 11.23 shows a planet orbiting the sun.
Explain why at points A and P of the orbit the
potential energy of the planet assumes its
minimum and maximum values, and
determine which is which. Hence determine
at what point in the orbit the planet has the
highest speed.

4._._--"""'_'_'_-_—_-_-_'_"“‘-—--_._

Figure 11.23 For question 21.

22 The diagrams in Figure 11.24 are not drawn to
scale and show, separately, the earth and the
moon, and the earth and the sun. A point
mass m is placed at point A and then at point
B. The force experienced by the mass at A
duetothe moonis F2_ andatBitis FY_ .

Similarly the forces at A and B due to the sun
are FA and F?

aun wnT

Moon
e O
earth

sun
& - S
earth

Figure 11.24 For question 22,

{a) Using data from Appendix 3, calculate the
ratio %%‘}'—“

{b) The tides on the earth have to do with the
difference between the forces on opposite
sides of the earth. Using your answer in
(a), suggest whether the sun or the moon
has the dominant role for tides on earth.

23 Show that the escape speed from the surface
of a planet of radius R can be written as

Ve = /28R, where g is the gravitational field

strength on the planet’s surface.

24 Consider two particles of mass m and 16m

separated by a distance d.

{a) Deduce that at point P, a distance £ from
the particle with mass m, the gravitational
field strength is zero.

(b) Determine the value of the gravitational
potential at P.

25 (a) Deduce that a satellite orbiting a planet of
mass M in a circular orbit of radius r has a

’ ’ § F T dw el
period of revolution given by T = /2.

(b) A grazing orhit is one in which the orbit
radius is approximately equal to the radius
R of the planet. Deduce that the period of
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revolution in a grazing orbit is given by
T= J_%’ where p is the density of the
planet.

(¢) The period of a grazing orbit around the
earth is 85 minutes and around the planet
Jupiter it is 169 minutes. Deduce the
ratio ﬂ

26 (a) The acceleration of free fall at the surface
of a planet is g and the radius of the planet
is R. Deduce that the period of a satellite in
a very low orbit is given by T = Zwﬁ,

{b) Given that g = 4.5ms™” and R =
3.4 x10°m, deduce that the orbital period
of the low orbil is about 91 minutes,

(c) A spacecraft in orbit around this planet has a
period of 140 minutes. Deduce the height of
the spacecraft from the surface of the planet.

27 Two stars of equal mass M orbit a common
centre as shown in Figure 11.25. The radius
of the orbit of each star is K. Assume that
each of the stars has a mass equal to 1.5
solar masses (solar mass = 2 % 10*"kg) and
that the initial separation of the stars is
2.0x10%°m.

Figure 11.25 For question 27,

{a) State the magnitude of the force on each
star in terms of M, K and G.
{b) Deduce that the period of revolution of
each star is given by the expression
_16x?R?
T GM
(c) Evaluate the period numerically.
(d) Calculate that the total energy of the two
slars is given by
GMm?*
4R

T}!

F=—

{e) The two-star system loses energy as a result
of emitting gravitational radiation. Deduce
that the stars will move closer to each
other.

{f) (i) Explain why the fractional loss of

energy per unit time may be calculated
from the expression

AEJE _3AT/T
Al 2 At

where &L s the fractional decrease in
period per unit time.

(i) The orbital period decreases at a rate of
AT = 72 ps yr', Estimate the fractional
energy loss per year.

{g) The two stars will collapse into each
other when AF = E. Estimate the
lifetime, in years, of this binary star

system,

28 Figure 11.26 shows equipotential surfaces due
to two spherical masses,

RS o Eme mUe e s

0.5

P T T T T R 1

=
R e R jla

1.0

=0.5 0 0.5 1.0
Figure 11.26 For question 28.
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-1.0

{a) Using the diagram, explain how it can be
deduced that the masses are unequal.

(b) Copy the diagram and draw in the
gravitational field lines due to the two
masses.

ic) Explain why the equipotential surfaces
are spherical very far from the two
masses.
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29 Figure 11.27 shows the variation with distance
r from the centre of a planet of the combined
gravitational potential due to the planet {of

V/108 J kg!

02 04 0.6

0.8 1.0

12—

Figure 11.27 For question 29.

it el

mass M) and its moon (of mass m) along the

line joining the planet and the moon. The

harizontal axis is labelled %, where d is the
centre-to-centre separation of the planet and
the moon.

{a) The distance d is equal to 4.8 % 10° m. Use
the graph to calculate the magnitude of the
gravitational field strength at the point
where 5 = 0.20.

{b) Explain the physical significance of the
point where § = 0.75.

{c) Using the graph, calculate the ratio ':'"’r
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~ Core - Thermal properties of matter

Thermal concepts

This chapter is an introduction to thermal physics. It introduces the concepts of
temperature, heat, internal energy and thermal equilibrium.

Objectives

By the end of this chapter you should be able to:
* understand how a temperature scale is constructed;

= appreciate that heat is energy that is exchanged between systems at

different temperatures;

= appreciate that internal energy is the total kinetic energy of the molecules
of a system plus the potential energy associated with the intermolecular

forces;

+ understand that the absolute temperature of a gas is a measure of the

average kinetic energy of its molecules;

» state the meaning of the mole and the Avogadro constant and do

calculations using them.

Temperature

Temperature is the intuitive concept of
‘hotness’ or ‘coldness’ of a substance. To
measure the temperature of a body we need to
find a property of the body that changes as the
‘hotness’ changes. Consider a thin tube filled with
mercury — as it becomes hotter, the length of
mercury increases (see Figure 1.1). The length of
the mercury column then becomes a measure
of the temperature of the mercury in the tube.
(Other properties such as electrical resistance,
voltage and pressure may be used, depending
on the kind of thermometer to be constructed.)

| | | cold

hotter

I I ]

Figure 1.1 As the mercury column gets hotter, its
length increases. This can be used to define a
temperature scale on a thermometer.

In 1742, Andreas Celsius created the temperature
scale that is commonly used today and is known
by his name. In the Celsius scale a value of zero
degrees is assigned to the freezing point of
water and a value of one hundred degrees is
assigned to the boiling point of water. A
thermometer employing the Celsius scale can be
made by first placing a glass tube containing
mercury in a mixture of ice and water and
labelling the length of the mercury as 0. then
placing it in boiling water and labelling the
new length as 100. Finally, the range from zero
to one hundred degrees is subdivided into equal
intervals. The degree of the Celsius scale is
denoted by "C. (It is a curious historical note
that Celsius himself actually assigned 0 °C to
the boiling point of water and 100 °C to the
freezing point.)

A thermometer like the one just described
actually measures the temperature of the
mercury it contains. To measure the
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temperature of another body we must bring the
thermometer into thermal contact with the body
of interest. If a thermometer originally at room
temperature is placed in a hot cup of coffee, the
length of the mercury column (i.e. the reading
of the thermometer) will go up and eventually
will settle to a constant value. Similarly, if the
thermometer is placed in a cup containing ice
water, the reading will start going down until,
eventually, a constant reading is obtained.
While the thermometer reading is changing,
there is a thermal interaction between the two
bodies (the thermometer and the coffee, say).
When the reading settles at a constant value,
the two bodies (thermometer and coffee) are in
thermal equilibrium. When thermal equilibrium
is reached, the temperature of the two bodies

is the same. Thus, the reading on the
thermometer is also the temperature of the
body.

Thermal equilibrium can exist between more
than two bodies. Consider three bodies, A, B
and C. Suppose that C is in thermal equilibrium
with both A and B. This implies that A and B
have the same temperature as C. They therefore
also have the same temperature as one another
and hence are in thermal equilibrium with one
another (see Figure 1.2).

Figure 1.2 Body A and bedy B are each in thermal
equilibrium with body C. Therefore they are in
thermal equilibrium with each other and hence
have the same temperature.

The absolute temperature scale (to be
discussed in more detail in later chapters) is
defined in terms of the conventional Celsius
scale through

T (in kelvin) = T (in degrees Celsius) 4+ 273

The lowest possible temperature on the absolute
scale is zero kelvin, 0 K. It is not possible to
achieve a lower temperature, On the Celsius
scale the lowest possible temperature is,
therefore, —273 °C.

Heat as energy

It was not until the nineteenth century that
‘heat” was recognized as a form of energy. Up
to then it was regarded as a kind of fluid
that moved from place to place. A historic
experiment by Joule demonstrated the
equivalence of heat and energy.

In the previous section, we mentioned that
two bodies that are in thermal contact and
have different temperatures will have a
thermal interaction. This interaction involves
heat.

» Heat is energy that is transferred from
one body and into another as a result of a
difference in temperature.

Thus, when a hot object is brought in contact
with a colder body, heat will be transferred to
the colder body and increase its temperature.
We say that the colder body has been ‘heated’.

Now, all substances consist of molecules and,
whether in the solid, liquid or gas phase, the
molecules are in constant motion. They
therefore have kinetic energy. In a gas the
molecules move randomly throughout the
entire volume of the gas. In a solid the motion
of the molecules is on a very much smaller
scale - the molecules simply vibrate about their
equilibrium positions. This requires kinetic



160 Core - Thermal properties of matter
= = ——————

energy as well. In addition, there are forces
between molecules (intermolecular forces,
which are electrical in nature). For gases these
forces are very small {under reasonable
conditions they are almost negligible). But they
are substantial for solids. Increasing the average
separation of two molecules of a solid requires
work to be done. This work goes into potential
energy associated with intermolecular forces.
(The case of liquids is intermediate between
gases and solids.)

We thus define the internal energy of a
substance as follows:

B . Wi s d
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Thus, the heat that is transferred from a hot to
a cold body increases the internal energy of the
cold body (and decreases the internal energy of
the hot body by the same amount). So the term
‘heat’ refers to energy associated with the
thermal interaction of two or more systems due
to a difference of temperature,

Similarly, if we place a large number of lead
pellets in a box and shake the box vigorously,
the temperature of the lead pellets will go up.
The lead pellets will be “heated’ and their
internal energy increases. But there is no heat
exchanged here. The internal energy of the
pellets increases because of the work that we
perform in shaking the box.

So the internal energy of a system can change
as a result of heat added or taken out and as a
result of work performed. Internal energy, heat
and work are thus three different concepts.
What they have in common is that they are all
measured in joules. Temperature is yet another
different concept. One of the big discoveries of
nineteenth-century physics was the relation
between temperature and kinetic energy of
molecules.

G 1 ™ .. - AT .- :-_:I I‘ '3 ._..I. i-i
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We therefore have a relationship between a
microscopic concept (the average kinetic energy
of molecules) and a macroscopic concept
{temperature).

Note that sometimes the term ‘thermal energy’
is also used. Some books use thermal energy to
mean heat as we defined it and others to mean
internal energy. The term thermal energy will
mostly be avoided in this book but when it is
used it will mean internal energy.

The atomic model of matter

Ordinary matter can be found in three forms or
phases: solid, liquid and gaseous. The solid
phase is characterized by high density and the
molecules are at fixed positions. In the liquid
phase, the density is lower and the molecules
are further apart. Unlike the solid phase,
molecules are free to move about, thus the
distance between them is not fixed. In the gas
phase, the molecules experience little
resistance to motion and move freely about -
the average distance between molecules is large.
This is illustrated in Figure 1.3.

Q e
Q
o Q
(b} liguid {c) gas

Figure 1.3 Typical arrangements of molecules in a
solid, a liquid and a gas.

In all three cases there are forces acting
between the molecules of the substance. These
intermolecular forces are strongest in the solid
phase and weakest (almost negligible) in the gas
phase. In the solid phase they are responsible
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for keeping the molecules in their fixed
positions (solids have fixed shapes) and are the
reason why large forces are needed to compress
or stretch solids.

If we consider a solid at low temperature, the
kinetic energy of each molecule is quite
small compared with the energy required to
move any two molecules a large distance
apart. The average distance between
molecules does not change and so the solid
stays a solid. As the temperature is increased,
the average kinetic energy of the molecules
increases and becomes comparable to the
energy required for separation. When this
happens, the molecules abandon their fixed
positions and move apart. The solid begins to
melt — it turns into a liquid. This
phenomenon is called a phase transition. If the
temperature is increased further, the
molecules may have enough energy to move
so far apart from each other that the
intermolecular forces are no longer
significant. The liquid turns into a gas.

The Avogadro constant

One mole of any substance is that quantity of
the substance whose mass in grams is
numerically equal to the substance’s molar
mass, u. The mole is the 51 unit for quantity.
The molar mass of hydrogen gas (H;) is

2 g mol™! and so one mole of hydrogen has a
mass of 2 g; one mole of oxygen (O;, molar
mass 32 g mol ') has a mass of 32 g, and so
on.
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Example question

Q1 T I IR S e T S A T I R TS BYF NS F T
How many grams are there in a quantity of
oxygen gas containing 1.20 x 10* molecules?

Answer

The number of moles is
1.20 = 10%

e ————— 19.93 ITID'
6.02 % 10%

Since the molar mass is 32 g mol~' the mass is

19.93 % 32 = 638 g = 0.638 kg

Questions

1 Give definitions of:
(a) temperature;
(b) heat;

(c) internal energy.

2 A hot body is brought into contact with a
colder body until their temperatures are the
same, Assume that no other bodies are
around. Is the heat lost by one body equal
to the heat gained by the other? Is the
temperature drop of one body equal to the
temperature increase of the other?

3 Abody at a given uniform temperature of
300 K and internal energy 8 x 10 ] is split
into two equal halves.
fal Has any heat been exchanged?

(b) What is the temperature of each half?
{c) What is the internal energy of each hali?

4 The volume of 1 mol of hydrogen gas (molar
mass 2 g mol~') at stp {standard temperature
and pressure) is 22.4 L,
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lal

(b

{c)

{d)

Find out how much volume corresponds

to each molecule of hydrogen.

Consider now 1 mol of lead (molar mass

207 g mol™', density 11.3 x 10° kg m™).

How much volume corresponds to each

molecule of lead?

Find the ratio of these volumes (hydrogen

to lead).

Hence determine that the order of

magnitude of the ratio

separation of hydrogen molecules
separation of lead atoms

is 10.

5 The density of aluminium is 2.7 g em™' and its
molar mass is 27 ¢ mol ',
{a) Find the mass of an atom of aluminium.
(b} Find the number of aluminium atoms per
cubic metre.
6 The density of copper is 8.96 g cm™* and its
molar mass is 64 g mol~'.
{al Find the mass of an atom of copper.
(b} Find the number of copper atoms per
cubic metre.
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Thermal properties

This chapter is an introduction to the basic principles of calorimetry and to experimental
methods used in measuring specific heat capacities and latent heats.

Dbjectives

By the end of this chapter you should be able to:

» state the basic definitions of calorimetry, such as specific heat capacity
and specific latent heats of fusion and vaporization;

» understand why temperature stays constant during a phase change;

+ outline methods for determining specific and latent heats
experimentally;

» solve calorimetry problems using @ = mcAT and Q = ml;

« state the factors that affect the rate of evaporation and distinguish
evaporation from boiling;

= appreciate Boltzmann’s equation, the fundamental relationship between the
absolute temperature and the average kinetic energy of the molecules.

temperature of 1 kg of iron by 1 K is 470 ],

whereas the energy required to raise the

temperature of 1 kg of silver by 1 K is only 234 |,

which is about half. On the other hand, it is

known that the thermal energy required to

» The amount of thermal energy needed to raise the temperature of 1 mol of iron and
raise the temperature of a mass of one ' 1 mol of silver by 1 K is about the same. This can
kilogram of a substance by one kelvin is
called the specific heat capacity, ¢, of the
material. To raise the temperature of a mass
m by AT kelvins, the amount of thermal i i
energy requived is therefore Aluminium 910

Specific heat capacity

When thermal energy is provided to a body, the
temperature of the body will, in general, increase.

= AT | Lead 130
(assuming that ¢ is temperature i i
independent), The units of specific heat | . Copper 390
capacity are Jkg "K', ' Silver 234

ey Water 4200

As Table 2.1 shows, different substances have Ethanol 2430
different values of specific heat capacity. Ice : 2200
Marble BE0

Consider, for example, iron and silver. The
thermal energy required to raise the Table 2.1 Specific heat capacities.
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be understood in terms of the molecular
picture of matter as follows.

A given amount of thermal energy provided to
1 mol of any substance will be divided among
the same number of molecules (since 1 mol has
Avogadro’s number of molecules) and so, on
average, the kinetic energy of each molecule
will increase by the same amount. This shows
up macroscopically as the same increase in
temperature. The reason that different
materials show different temperature increases
when the same amount of thermal energy is
provided to 1 kg of each material (i.e. they have
different specific heat capacities) is that 1 kg of
each material contains a different number of
molecules.

The product of mass times specific heat capacity
defines the heat capacity of a body, (:

C=m

Heat capacity is the amount of thermal energy
required to change the temperature of one
kilogram by one kelvin. The concept of heat
capacity is useful when a body consists of a
number of parts of different specific heat
capacities, such as, for example, a metal tank
containing water. If the tank has mass M and
specific heat capacity ¢ and the water has mass
m and specific heat capacity ¢, then the heat
capacity of the water tank is

C=Mc+mc'

Knowing the heat capacity of the water tank
allows us to say that, if a quantity of thermal
energy Q is given to the water tank, then the
rise in temperature AT will be found from

Q=CAT

Unlike specific heat capacity, which depends on
the substance, heat capacity only depends on
the particular body in question.

Example question

Ql TEERRPH N T N ST T I TR T
When a car brakes, an amount of thermal energy
equal to 112 500 ] is generated in the brake
drums, If the mass of the brake drums is 28 kg

and their specific heat capacity is 460.5 | kg™’
K=", what is the change in their temperature?

Answer
From Q= mecAT we find
AT = 2
mc
B 112500
T 28 x 460.5
=8.7°C

Thermal equilibrium

It is everyday experience that thermal energy
flows from hot bodies into cold bodies (see
Figure 2.1). When a cold and a hot body are
placed in contact, thermal energy will flow
until the temperature of both bodies is the
same. (In fact, temperature can be defined as
that property which is common to the two
bodies in this case.) This state of affairs is called
thermal equilibrium. The amount of thermal
energy lost by the hot body is equal to the
amount of thermal energy gained by the cold
body.

Figure 2.1 In an isolated system rhermal energy
always flows from the hotter body to the colder.

Example question

Q! IO s s T T S A TOSF N T TIIEET
A piece of iron of mass 200 g and temperature
300 °C is dropped into 1.00 kg of water of
temperature 20°C, What will be the eventual

temperature of the water? (Take c for iron as
470 ) kg™ K™ and for water as 4200 | kg™ ' K™'.)

Answer
Let T be the final unknown temperature. The iron
will also be at this temperature, so

amount of thermal energy lost by the iron
= Mg Ciran (300 — T
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and

amount of thermal energy gained by water

= Myater Cwatar (1 — 20)
Conservation of energy demands that
thermal energy lost = thermal energy gained, so
Mo Ciron (300 = T) = Myater Cuanee( T — 20)
=T =26.1°C==26°C
Note how the large specific heat capacity of water
results in a small increase in the temperature of
water compared with the huge drop in the
temperature of the iron,

(hange of state

Ordinary matter can exist as a solid, a liquid or
a gas. These three are called states of matter.
Heating can turn ice into water and water into
steam. Ice will turn into water if the temperature
of the ice is its melting temperature: 0 °C.
Similarly, to turn water into steam the
temperature must be 100 °C. This means that

if we are given a piece of ice at a temperature
of, say, —10 °C, to melt it we must first raise its
temperature from —10 °C to zero.

After all of the ice has turned into water, we
have water at a temperature of 0 °C. Any
additional thermal energy supplied will
increase the temperature of the water. When
the temperature reaches 100 °C, any additional
thermal energy supplied is used to turn water
into steam at the same temperature of 100 °C.
That is, the thermal energy is used to do the
work necessary to move the molecules further
apart. After all of the water has turned into
steam, the temperature begins to increase
again. We thus see that when the state of
matter is changing, the temperature does not
change.

st eF ;
- -

= :

- —
| iy |
;. Phea ¥
" - =
W ; . : - SRR
[
ed 3
i i
—E #
H"" = R
:I‘::J’-l‘l." b4 3 1!‘:1#.: — = L 4]

Table 2.2 shows values of the specific latent
heats of fusion and vaporization for various
substances.

The term latent heat (without the *specific’ in
front) is used to denote the thermal energy
necessary to change the phase of a substance
irrespective of mass.

Water 3344 0 2257 100
Ethanol 108.9 =114 &40 783
Aluminium 395 660 10548 2467
Lead 23 327 B849.7 1740
Copper 205 1078 2567 5190
Iron 275 1540 6285 2200

Table 2.2 Latent heats of fusion and vaporization together with the melting and boiling temperatures.
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Figure 2.2 shows how the temperature of 0.5 kg
of a hypothetical substance changes as thermal
energy is provided to it.

TPC—r : -

L = / ligquid and vnpmilr_'
i) |

liquid

-0 F

salid undrqumf
solid, | |
0 a0 108 150 200 250 306 50

-0

energylkl

Figure 2.2 When thermal energy is provided to a
solid substance, the temperature increases,
except when the phase is changing.

‘We may deduce the following from Figure 2.2.
First, that the melting and boiling points are,
respectively, —10 “C and 130 "C. The specific
latent heat of fusion is found from

Q =ml;
— Lr — 'g-
m
50k
= 05kg
=100 kI kg™

and the specific latent heat of vaporization is
found from

a = .'TIL.,-
=L,= E
m
100 kJ 1
= _——— =200kJk
0.5kg &

The specific heat capacity in the solid phase is
found from

Q =mc AT
i
mAT
50k)
~ 0.5kg x 70K
=143klkg™ K

In the liquid itis¢ = 0.71 k] kg™" K" and in the
vapouritisc =286k kg 'K\,

If thermal energy is supplied at a constant rate
to a given mass of a solid, then its temperature
as a function of time might be as shown in
Figure 2.3.

T4
VEPOur
boiling liquid and -.-npc:ur/
St R ———
liguid
melting | solid and liguic 1qul
point
solid
»>

tme

Figure 23 Graph of temperature as a function of
time when a substance is heated at a constant rate,

The temperatures corresponding to the
horizontal parts are the melting and boiling
temperatures.

Knowledge of the rate of thermal energy supply
and the actual time over which melting and
boiling take place enables us to determine the
specific latent heats. (See Example questions 4
and 5 below.)

Example questions

O R e e o e T
An ice cube of mass 25.0 g and temperature
—10.0 °C is dropped into a glass of water of mass
300.0 g and temperature 20.0 °C. What is the
temperature eventually? (Specific heat capacity of
ice = 2200 ) kg~' K'; latent heat of fusion of

ice = 334 kl kg™'.)

Answer

Let this final temperature be T. lgnoring thermal
energy lost by the glass itself, water will cool
down by losing thermal energy. This thermal
energy will be taken up by the ice to:
(a) increase its temperature from —10 °C to 0 °C,
the thermal energy required being
25 %1077 % 2200 x 10;
(b) melt the ice cube into water at 0 °C, the thermal
energy required being 25 x 107" x 334 x 107;
(c) increase the temperature of the former ice
cube from 0 °C to the final temperature T.
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Thus

0.3x4200x(20=T) = (25x 1077 %2200 10)
+(25x 1077 %334 x 10"
+(25% 107 %4200 % T

Solving for T gives T = 11.9°C.

Q4 s s S S P ST
Thermal energy is provided at a constant rate of
833 157" to 1 kg of copper at the melting
temperature. I it takes 4 minutes to completely melt
the copper, find the latent heat of fusion of copper.

Answer

The thermal energy needed to melt 1 kg of
copper is L, the specific latent heat of fusion.
In 4 minutes the heat supplied is

833 x 60 x 4=200k],s0 L; =200k kg™ '.

()5 rEITTT T W P TS e Ty
Look back at Figure 2.3 and determine the
relative sizes of the specific latent heats and
specific heat capacities. Recall that thermal
energy is provided at a constant rate.

Answer

To compare the specific heats in the solid,
liquid and vapour phases remember that
ACH = mc AT and so

AQ_ - AT

Al At
_(AQ/an
 mAT/AD

Since the rate of thermal energy supplied is
constant, it follows that the phase in which the rate
of increase of temperature is the largest has the
smallest specific heat capacity, Clearly, the
transition that lasts the longest also has the largest
specific latent heat.

Measuring specific heats

The specific heat capacity of a solid or liquid can
be measured using an electrical methed that
directly measures the amount of thermal
energy flow into a body. The liquid or solid is
placed inside a calorimeter of known heat

capacity, C, and its mass and initial
temperature recorded. The calorimeter is
insulated and an electrical heating element is
inserted through a small opening at the top
into the liquid or into a hole drilled in the
solid (see Figure 2.4). The heating element is
connected to a source of potential difference
and the voltage across it is recorded, as is the
current through the element. A thermometer
is also inserted into a hole drilled in the solid.
If the material to be measured is liquid, then a
similar arrangement can be used, stirring the
liguid every time a temperature measurement
is made.

heating
element
]

surrer thermometer

|
|
|
|
|
g.x.l

.-.-......

Figure 2.4 Apparatus for measuring the specific
heat capacity of a solid (left) and a liquid (right).

The current is switched on at ! = 0 and allowed
to run until the temperature is increased by 40
to 50 °C. The temperature is recorded at regular
intervals of about a minute. If the maximum
temperature reached after time ! is T, then
the energy supplied by the battery to the
liquid is

energy supplied = VIt

where [ is the current in the heater and V' the
voltage across it. The thermal energy absorbed
by the liquid and the calorimeter is

energy absorbed = mc (T — T) + C(Trmax — T)

Equating the two quantities of energy allows us
to determine ¢,

Another method, the method of mixtures,
measures the specific heat capacity as follows.
A hot solid of known initial temperature is put
in an insulated calorimeter, of known heat
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capacity and initial temperature, which
contains a liquid such as water. The final
temperature of the water is recorded after
thermal equilibrium has been reached. Thus,
consider a mass of 0.400 kg of a solid at 80 °C
that is put in a 100 g copper calorimeter
containing 800 g of water at 20 °C. The final
temperature of the water is measured to be
22 °C. From these values, we may deduce the
specific heat capacity of the solid as follows.

Amount of thermal energy lost by the solid:
0400 xc x (B0 —-22)=252c J

Amount of thermal energy gaineﬂ by the
calorimeter and the water:

0.100 = 390 x (22 - 20)
+ 0.800 x 4200 x (22 - 20) = 6798 J

Equating the two we find
= 293.11(;_;"1!{"

Measuring specific latent heats

To measure the specific latent heat of fusion of
ice, a simple method (the method of mixtures)
is to put a quantity of ice at 0 °C (the ice is in a
mixture with water at 0 °C) into a calorimeter
containing water at a few degrees above room
temperature. (The ice is blotted dry before being
thrown into the calorimeter. Its mass can be
determined by weighing the calorimeter at the
end of the experiment.) Thus, suppose that 25 g
of ice at 0 °C is placed in an aluminium
calorimeter of mass 250 g containing 300 g of
water at 24 °C, The temperature of the water is
measured at regular intervals of time until the
temperature reaches a minimum value,
Suppose that this temperature is 17 °C. The
calorimeter and water lost thermal energy,
which the ice received. S0

Thermal energy lost by calorimeter and water:

0.250 x 910 x (24 — 17)
+0.300 x 4198 x (24 — 17) = 10408

Thermal energy received by ice:

0.025 x L +0.025 x 4198 x 17
=0.025 x L + 1784

Equating the two gives

1784 + 0,025 = | = 10408

= L~340k/ kg™’
To measure the specific latent heat of
vaporization of water we can use an electrical

method. Water is heated in a double container
{as shown in Figure 2.5) with an electric heater.

Figure 2.5 Steam condenses in the outer
container and the water is collected in a beaker.

Steam can leave the inner container through a
small hole and collects in the outer container,
where it condenses into water. This water can
be allowed to drip into a beaker, which can then
be weighed to determine the mass of water that
has been boiled away. If the experiment lasted
for time | and the voltage and current in the
heater were measured as | and I, respectively,
the energy supplied was VI, If m is the mass of
water that boiled away, the thermal energy it
received was mL,. Equating the two expressions
allows us to determine the specific latent heat
of vaporization.

Evaporation

The molecules of a gas move about with a
distribution of speeds. The same is true for the
molecules of a liquid. The faster molecules are
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the most energetic and if they find themselves at
the surface of the liquid they may escape from
the liquid. This phenomenon is known as
evaporation. Note that unlike boiling (where
molecules from anywhere within the volume
occupied by the liquid can escape) only surface
molecules participate in evaporation. This means
that the average kinetic energy of the molecules
that stay behind is reduced, which in turn means
that the temperature of the liquid is reduced,
since temperature is a measure of the average
kinetic energy of the molecules of the substance.

The rate of evaporation (that is, the number of
molecules escaping the liquid per second)
increases as the surface area and temperature
of the liquid are increased. If the liquid is
placed in an enclosed volume, then the
molecules that escape collect over the liquid
and their pressure is called vapour pressure.
The vapour pressure increases as more
molecules escape and equilibrium is reached
when as many molecules escape as fall back
into the liquid. Thus, if a stream of air is
directed at the vapour over the liquid, hence
pushing away the evaporated molecules, the
rate of evaporation will increase.

The kinetic theory of gases

The properties of gases can be understood in
terms of a simple but effective mechanical
model. The gas consists of a very large number
of molecules moving randomly about with a
range of speeds and colliding with each other
and the container walls. We can make a model
of this by making certain assumptions and
seeing what these lead to. The basic assumptions
of the kinetic theory of gases are:

1 A gas consists of a large number of molecules.

2 Molecules move with a range of speeds.

3 The volume of the molecules is negligible
compared with the volume of the gas itself,

4 The collisions of the molecules with each other
and the container walls are elastic,

5 Molecules exert no forces on each other or the
container except when in contact.

6 The duration of collisions is very small
compared with the time berween collisions.

7 The molecules obey Newton's laws of
mechanics.

Some of these assumptions are illustrated in
Figure 2.6.

. e

T

Figure 2.6 The molecules move randomly in the
volume of the container with a range of speeds.

Using these assumptions together with the laws
of mechanics and the equation of state allows
the derivation of one of the most important
formulae in physics, namely the Boltzmann
equation

my? = 2kT

[
Fatfin

Here the speed v is defined by

e aa)
N

So v is the square root of the average of the
squares of the speeds of the molecules of the gas (the
average of the velocity vectors of all the
molecules is zero since they move randomly in
all directions). We call v the root mean square
speed or rms speed. (It must be realized that v
is not the average speed of the molecules - but
it is numerically close to the average, so we are
usually excused for calling v the average
molecular speed even if it is not technically
correct.)

Appearing in this equation is a new constant
of physics, the Boltzmann constant k, the
value of which is k = 1.38 x 107 J K™ (it is
the ratio of the gas constant R to the Avogadro
constant).
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'th‘:rr
average Hnetipméfgy_ of molecules
o absolute temperature
~ that is, the absolute temperature is a
measute of the average kinetic energy of the
molecules of a substance.

Example questions

QEI IS HIEa N VRS M it
Four molecules have speeds of 300 ms™',

350m s, 380 m s and 500 m 5", Find the
average speed and the rool mean square speed.

Answer

_ 300 + 350 + 380 + 500 |
average speed = a ms

=3825ms™"

—  [300% + 3507 + 380% + 500° -

Vv =\ 3 < =389.5 ms™!

)7 EvsssresrseTsrorETTOSTEISEIS TR
If the root mean square molecular speed is
doubled, what is the new lemperature?

Answer

From the Boltzmann equation it follows at once
that the temperature is four times as big.

Molecular explanation of pressure

The pressure of a gas originates from the
collisions of the molecules with the walls of its
container. At every collision, each molecule has
its momentum changed and so a force acts from
the wall onto the molecule. By Newton's third
law, the molecule exerts an equal and opposite
force on the wall. The total force due to all the
colliding molecules divided by the area over
which the force acts gives the pressure of the gas.

> Presmreus the normal ﬁm:eper umtarea
tullﬁiﬂns of the gas. mul‘ééﬁiés with the 1
- walls of its container (and not from m‘.llssmns '
o ~1.~.em molecules). :

From the molecular point of view, we may
identify two factors that affect the pressure of
the gas. The first is the average molecular speed
(the higher the speed, the larger the change in
momentum of the molecules and so the higher
the force — see Figure 2.7).

¥ FIIIJ[’III' P

Pringy =—M¢

Ap=-2my

Figure 2.7 A molecule exerts a force on the
container wall because its momentum p
changes with every collision.

The second factor is the frequency of collisions.
The more frequent the collisions, the higher the
pressure. Thus, in providing molecular
explanations for pressure it is sufficient to
remember that roughly

P o speed x frequency of collisions

As an application of this, consider a gas that has
been heated under constant volume. The
molecules are moving faster on average
(increased temperature) and the frequency with
which the collisions take place also increases
(the time between collisions is reduced since
molecules are moving faster). For both reasons
(speed and frequency) the pressure then goes up.

By contrast, if a gas is compressed isothermally,
the average speed stays the same. But the
distance molecules have to travel between
collisions with the walls is reduced (since the
volume is reduced) and so the frequency of
collisions increases. Hence rhe pressure
increases (because of frequency only).

Example questions

8 =TTt
A gas is compressed slowly by a piston. Explain
why the temperature of the gas will stay the same.
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Answer

If a gas is compressed slowly, the speed with
which the molecules rebound off the piston is the
same as that before the collision with the piston.
Hence, the average kinetic energy of the
molecules slays the same. Since the average
kinetic energy is proportional to the absolute
temperature of the gas, the temperature will stay
the same.

Y TR Sees I ST T ITI T IS BN P T I S
A gas is compressed rapidly by a piston (see
Figure 2.8). Explain why the temperature of the
gas will increase.

Answer

The rapid movement of the piston means that
molecules will rebound off the piston with an
increased speed. Hence the average kinetic
energy of the molecules will increase, and since
the average kinetic energy is proportional to the
absolute temperature of the gas, the temperature
will increase as well.

Q1) P T ST T = T S N IS L FEILE Y
A gas expands isothermally. Explain from a
molecular point of view why the pressure
decreases.

Answer

The volume of the gas expands, which means
that, on average, molecules have a larger distance
to travel between successive collisions with the
walls. Thus, the collisions are less frequent than
before and so the pressure decreases.

Q11 TR S e SR PR TR TT]
A gas is heated at constant pressure. Explain why
the volume must increase as well.

Answer

The temperature increases and so the molecules
move faster, on average. From P o speed x
frequency, we deduce that the frequency of
collisions must decrease if the pressure is to stay
the same. This can happen if the volume of the
gas increases so that molecules have a longer
distance to travel in between collisions.

In the questions that follow, you may need to use
the specific heat capacities shown in Table 2.1 an
page 163 and the latent heats shown in Table 2.2
on page 165.

1 Define what is meant by specific heat
capacity of a substance. Consider two metals
that have different specific heat capacities.
The thermal energy required to increase the
temperature of 1 mol of aluminium and
1 mol of copper by the same amount are
about the same. Yet the specific heat
capacities of the two metals are very
different. Suggest a reason for this.

2 A body of mass 0.150 kg has its temperature
increased by 5.00 °C when 385 | of thermal
energy is provided to it. What is the body’s
specific heat capacity?

3 A radiator made out of iron has a mass of
45.0 kg and is filled with 23.0 kg of water.

{a) What is the heat capacity of the water-
filled radiator?

{b) 1If thermal energy is provided to the radiator
at the rate of 450 W, how long will it take
for the temperature to increase by 20.0 °C?

4 A car of mass 1360 kg descends from a hill of
height 86 m at a constant speed of 20 km h™'.
Assuming that all the potential energy of the
car goes into heating the brakes, find the rise
in the temperature of the brakes. (Take the
heat capacity of the brakes to be 16 kJ K'
and ignore any thermal energy losses to the
surroundings.)
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5

10

The water in an iron pipe has frozen to ice
at —4.8 °C. The heat capacity of the pipe is
7.1 k) K~'. The volume of ice in the pipe is
12.3 L. What is the combined heat capacity
of the pipe and ice? To melt the ice, a
heater of power output 4.99 kW is
connected to the pipe. How long will it
take for the ice to melt? (Density of ice =
0.929 kg L™'; specific heat capacity of ice

= 2.20 k) kg™" K~'; latent heat of fusion of
ice = 334 k) kg~'.)

How much ice at =10 *C must be dropped
into a cup containing 300 g of water at 20 °C
in order for the temperature of the water to be
reduced to 10 *C? The cup itself has a mass of
150 g and is made out of aluminium. Assume
that no thermal energy is lost to the
surroundings.

The surface of a pond of area 20 m? is
covered by ice of uniform thickness & cm.
The temperature of the ice is =5 °C. How
much thermal energy is required to melt this
amount of ice into water at 0 °C? (Take the
density of ice to be 900 kg m~?.)

A frozen pond, of surface area 50.0 m?, is
covered by a sheet of ice of thickness 15 cm.
If the pond receives solar radiation of intensity
342 W m~?, find out what fraction of the ice
will be turned into water in 6.0 h. (Take the
ice temperature to be 0.0 °C and the latent
heat of fusion of ice as 334 k) kg~'. Take the
density of ice to be 900 kg m=.)

Radiation from the sun falls on the frozen
surface of a pond at a rate of 600 W m=2, If
the ice temperature is 0 °C, find how long it
will take to melt a 1.0 em thick layer of ice.
(Take the density of ice to be 900 kg m~*.)
What assumption have you made in reaching
your answer?

{a) How much thermal energy is required to
warm 1.0 kg ice initially at —10 °C to ice
at0°C?

(b) How much thermal energy is required to
melt the ice at 0 °C.

(c) How much thermal energy is required to
further increase the temperature of the
water from 0 °C 1o 10 °C..

n

12

13

14

15

16

(d) In which stage (warming the ice, melting
the ice, warming the water) is the thermal
energy requirement largest?

lce at 0 °C is added to 1 L of water at 20 °C,
cooling it down to 10 °C. How much ice was
added?

A quantity of 100 g of ice at 0 °C and 50 g
steam at 100 °C are added to a container that
has 150 g water at 30 °C. What is the final
temperature in the container? Ignore the
container itself in your calculations.

A calorimeter of mass 90 g and specific heat
capacity 400.0 | kg~' K*' contains 300.0 g
of a liquid at 15.0 °C. An electric heater rated
at 20.0 W warms the liguid to 19.0 °C in

3.0 min. Assuming there are no thermal
energy losses to the surroundings, find the
specific heat capacity of the liquid.

A calorimeter of heat capacity 25 | K™
contains 140 g of a liquid; an immersion
heater is used to provide thermal energy at a
rate of 40 W for a total time of 4.0 min. The
temperature of the liquid increases by 15.8 °C.
Calculate the specific heat capacity of the
liquid. State an assumption made in reaching
this result,

A hair dryer consists of a coil that warms air

and a fan that blows the warm air out. The coil

generates thermal energy at a rate of 600 W.

Take the density of air to be 1.25 kg m~ and

its specific heat capacity to be 990 | kg™' K~'.

The dryer takes air from a room at 20 °C and

delivers it at a temperature of 60 °C.

{a) What mass of air flows through the dryer
per second?

(b) What volume of air flows per second?

An auditorium of size 40 m X 20 m X 8 m

has 600 people in it. The temperature of the

air is initially 27 °C. It takes 29 | of thermal

energy to raise the temperature of 1 mol of

air by 1 K and the molar mass of air is about

29 g mol~'. Take the density of air to be

constant at 1.25 kg m~*.

(al How many moles of air are there in the
auditorium?

{b) Assuming that each person gives off
thermal energy at a rate of 80 W, calculate
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how fast the temperature in the auditorium
is rising. Assume that the auditorium is
closed so that cooler air does not enter.

17 (a) Discuss the factors that affect the
evaporation rate of a liquid.

{(b) Explain, in terms of molecular behaviour,
why cooling takes place as a result of
evaporation.

(c) Give one practical application of the
cooling effect of evaporation.

18 A container of fixed volume is filled with an

ideal gas at 0.00 °C. The total kinelic energy
of the molecules in the container is £ An

19

20

identical container has twice the mass of gas
in it and the total kinetic energy of those
molecules is 2F. Find the temperature of the
second container.

A container is filled with a mixture of
nitrogen and oxygen. What is the ratio of
the rms speed of oxygen molecules to that
of nitrogen molecules? (Molar mass of
oxygen = 32 g mol™'; molar mass of
nitrogen = 28 g mol™'.)

By what factor does the rms speed of neon
molecules increase if their temperature
increases by a factor of 47
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Ideal gases

A gas is a collection of a very large number of molecules. We call the gas ideal if the
molecules do not exert any forces on each other. Many real gases show behaviour that
is a very close approximation of ideal gas behaviour. As a result of collisions between the
molecules and the walls of the container of the gas, pressure develops. The pressure,
volume, temperature and the number of moles in the gas are related through the ideal
gas law. Application of the laws of mechanics to the motion of the molecules leads to
the connection between the average. kinetic energy of molecules and the absolute
temperature of the gas.

Objectives

By the end of this chapter you should be able to:

* state the definition of pressure: P = %;

* understand that an ideal gas is a gas in which the molecules do not exert
Jorces on each other except when colliding; an ideal gas obeys the law
PV =nRT at all pressures, temperatures and volumes;

* understand the ideal gas law and solve problems using it % = 2%.

*+ appreciate that pressure in a gas develops as a result of collisions between
the molecules and the walls of the container in which the momentum of
molecules changes.

Pressure
Pressure is defined as the normal force to an
area per unit area. The pressure on the small i

circular area A in Figure 3.1 is thus given by the |

expression Figure 3.1 Pressure is the force normal to an area
divided by that area.
P Feose
oA
Example question
The unit of pressure is newton per square 01

metre, N m™#, also known as pascal, Pa. Another
commonly used non-SI unit is the atmosphere,
atm, which equals 1.013 x 10° Pa.

Two hollow cubes of side 0,25 cm with one face
missing are placed together at the missing face
(see Figure 3.2). The air inside the solid formed is

pumped out. What force is necessary to separate
the cubes?

Ld‘il‘hl'.
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Figure 3.2 What force is necessary to separate the
cubes?

Answer

The pressure inside the solid is zero and outside it
equals atmospheric pressure, 1 D13 X 107 Pa.
Thus, the force is

F=FA
= 1.013 x 10* x (0.25)°
=633=10°N
Gases

It is convenient to use the number of moles, n,
of the gas rather than the mass itself to specify
the quantity of a gas. Recall that 1 mol of any
substance contains the same number of
molecules, the Avogadro constant

Ny = 6.02 % 107 molecules mol™

and that the number of moles of a gas can be
found by dividing the total number of
molecules by the Avogadro constant

N
.

The size of molecules varies from substance to
substance, but the typical order of magnitude
of molecular size is in the range from 10° m
to 107" m

The parameters P, V, T and n are related to each
other. The equation relating them is called the
equation of state. Our objective is to discover the
equation of state for a gas. To do this a number
of simple experiments can be performed as
described in the following sections.

Example questions

Q! PETERIH T N TSNS T
How many molecules are there in 6 g of
hydrogen gas?

Answer

A quantity of 6 g of hydrogen gas corresponds to
3 mol, since the molar mass of hydrogen gas is
2 g mol ™. Thus, there are 3 % N, molecules or
1.81 x 10%,

Make a rough estimate of the number of water
molecules in an ordinary glass of water.

Answer

A glass contains about 0.3 L of water, which has a
mass of about 300 g. Since the molar mass of water
is 18 g mol ', it follows that the glass contains

— =2 17 mol

or 10** molecules.

The Boyle-Mariotte law

The equipment shown in Figure 3.3 can be used
to investigate the relationship between pressure
and volume of a fixed quantity of gas that is
kept at constant temperature.

'-{-J- weights

Figure 3.3 Apparatus for verifying the
Boyle-Mariotte law.

It consists of a syringe inside which a quantity
of air is trapped. The pressure inside the syringe
(i.e. the pressure of the air) can be increased by
adding weights to the piston as shown. By
varying the weights on the piston and
recording the changes in the volume of the gas,
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the pressure-volume relationship can be
established.

The results of a typical experiment are shown
in Figure 3.4.

>y = v
Figure 3.4 The relationship between pressure and

volume at constant temperature, The points on
the curves have the same temperature.
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change to

PV, = PyVs
Figure 3.5 The Boyle-Mariotte law,

The hyperbola in the pressure-volume diagram
is also known as an isothermal curve or
isotherm: the temperature at any point on the
curve is constant,

Example question

()4 FEEIEAISSETRTTTTTETIIEI A4 eemTTITINTEIEL
The pressure of a gas is 2 atm and its volume

0.9 L. If the pressure is increased to 6 atm at
constant temperature, what is the new volume?

Answer

From PV, = PV, we have 2 X 0.9 =
from which v = 0.3 L.

6 XV

The volume-temperature law

The dependence of volume on temperature of a
fixed quantity of gas kept at constant pressure
can be investigated with the apparatus shown
in Figure 3.6. This was how it was first done by
Charles and Gay-Lussac. The gas is surrounded
by water that is heated from below. As it
expands, the pressure is kept constant by
adjusting the amount of mercury in the tube so
that h stays the same. The constant gas pressure
15 thus the sum of atmospheric pressure plus
the amount pgh.

mercury

Figure 3.6 Apparatus for verifying the
volume-temperature law.

It is found that the volume increases uniformly
with temperature. If this same experiment is
repeated with a different quantity of gas, or a
gas at a different constant pressure, the result
is the same. In each case, the straight-line graph
of volume versus temperature is different. But
the striking fact is that when each straight line
is extended backwards it always crosses the
temperature axis at —273.15 °C, as in Figure 3.7.

vt /
1
F
-
*‘I,‘ /
.‘_‘_..-'" -
-f"l- _,-r"f
-
e
- i -'"
P ___.-"' ‘_--"' C
Pt i range of experiment
o= T F——=
2 =T
e
o -
=273°%C temperaturne™C

Figure 3.7 When the graph of volume versus
temperature is extended backwards, all the lines
intersect the temperature axis at the same point.
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This suggests that there exists a minimum
possible temperature, namely —273.15 °C. Thus,
we can devise a new temperature scale, in
which the minimum possible temperature
occurs at zero. This scale is called the Kelvin
scale, and the relationship between the Celsius
and Kelvin scales is

T (in kelviny = T (in degrees Celsius) + 273.15

(We usually approximate 273.15 to 273.)

P
e A

o

.....

When the temperature in a graph of volume
versus temperature is expressed in kelvin, the
straight line passes through the origin, as in
Figure 3.8.

=
*

0 K

Figure 3.8 If temperature is exprgssed in kelvin,
the graph goes through the origin.

The volume-temperature law is illustrated in
Figure 3.9.

change to |

Lt L |
T T
Figure 3.9 The volume-temperature law.

Example question

()5 TTISSSETETTTT eI AT LT Y
A gas expands at constant pressure from an
original volume of 2 L at 22 *C to a volume of

4 L. What is the new temperature?

Answer

From
v conslant
==

it follows that

2 _4
295 T
and so

T =590Kor317°C

Note that we converted the original temperature
into kelvin,

The pressure-temperature law

What remains now is to investigate the
dependence of pressure on temperature of a
fixed quantity of gas in a fixed volume. This can
be done with the apparatus shown in Figure 3.10.

pressure gauge

thermometer

;;;;;;;;

Figure 3.10 Apparatus for verifving the
relationship between pressure and temperature.

The gas container is surrounded by water whose
temperature can be changed and a pressure
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gauge measures the pressure of the gas. We find
that pressure increases uniformly with
increasing temperature. The graph of pressure
versus temperature is a straight line that, when
extended backwards, again intersects the

temperature axis at —273.15 °C, as in Figure 3.11.

e
P /
. = /
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- -_r,.-"
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_.::.-'"" e range of experiment
!'l- i ‘.-l" Laat -—r‘
it
= -
=273°C temperalure/*C

Figure 3.11 The graphs of pressure versus
temperature when extended backwards intersect
the temperature axis at the same point.

When the temperature in a graph of pressure
versus temperature is expressed in kelvin, the
straight line passes through the origin, as in
Figure 3.12.

0 TIK
Figure 3.12 If temperature is expressed in kelvin,
the graph goes through the origin,

This is more evidence in favour of the existence
of an absolute temperature scale.
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The pressure-temperature law is illustrated in
Figure 3.13.

change o
Pr_ P
T T

Figure 3.13 The pressure-temperature law.

Example question

00 ey e e T A T TP TEEENSF IR YNY
A gas in a container of fixed volume is heated
from a temperature of 20 °C and pressure 3 atm to
a temperature of 85 *C. What is the new pressure?
Answer

From

T

P = 3.67 atm

The equation of state

If we combine the results of the three preceding
experiments, we see that what we have
discovered is that

v
oo constant

What is the value of the constant? To determine
that, we repeat all of the preceding experiments,
this time using different quantities of the gas.
We discover that the constant in the last
equation is proportional to the number of moles
n of the gas in question:

'PT—V =n x constant
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We can now measure the pressure, temperature, (Jf =mmrrrEnsaE sy M EEERITE
volume and number of moles for a large A container of hydrogen of volume 0.1 m* and
number of different gases and calculate the temperature 25 °C contains 3.20 x 10
value of £7. We find that this constant has molecules. What is the pressure in the container?
the same value for all gases — it is a universal
constant. We call this the gas constant R. It has Aty
the numerical value The number of moles present is

1 21

R =831 JK' mol’ e 80
6.02 = 104
‘. =053
» Thus, indly the equationofstatels | S0

55_:_;;;Pia?‘,,ﬁﬂ:;:%éil;;,iﬁ:'i::::v::'Eii—:::ii:: p— RnT
 (Remember that temperature must always ~ v
oing: it itisiiiaais e : 8.31 x 0.53 x 298

o '
e IiEidemmny . . . 8 L —
Ebgmhtirm.},___,;_-__..u.“:_-__,-::;-n. ;
& 8> i - - il . l.r.---""- -

P il Rl o

R |
=13x10°Nm™

A gas that obeys this law at all temperatures,
pressures and volumes is said to be an ideal

gas. Real gases obey this law only for a range |
of temperatures, pressures and volumes. The |
equation of state can be illustrated as in

)Y I 1S S e T S T
A gas of volume 2 L, pressure 3 atm and
temperature 300 K expands to a volume of 3 L
and a pressure of 4 atm. What is the new
temperature of the gas?

Figure 3.14.
Answer
= constant
—— = constan
-+ T
change to _: %
Ix2 3
=4 x =
T 300 = T
I _Fabs T ivin
mT, T giVing
Figure 3.14 The equation of state, T =600K

Q) i Ty S SIS ST T TR SO ARSI T I
Figure 3.15 shows two isothermal curves for the

same quantity of gas, Which is at the higher
QF OIS S I IS NI S Fe PR S FATT 7 lemperaturef

How many moles of gas are there in a gas of
temperature 300 K, volume 0.02 m* and pressure "
2 % 10° Pa?

Example questions

Answer

A"
n= R_T
2 %10 = 0.02
8.31 = 300

1.60 mol . Figure 3.15.
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Answer

Draw a vertical line that intersects the two
isotherms at points A and B. Since B is at higher
pressure than A and both have the same volume,

it follows from £ = constant that B is at the higher

=
temperature.

Q] R TIIIT EI TR SRS T FE RS
Figure 3.16 shows two curves obtained in an
experiment to investigate the dependence of
pressure on lemperature at constant volume,
Which straight line corresponds to the larger
volume? (Both curves correspond to the same
number of moles.) '

L 3

0
Figure 3.16.

Answer

Draw a vertical line which intersects the two
straight lines at points C and D. Since D has
higher pressure than C and both have the same
temperature, it follows from PV = constant that C
is at higher volume.

Q1 TS S A I T EINT I A RS ETEs
Figure 3.17 shows how the pressure of a fixed
quantity of gas depends on temperature in kelvin.
As the temperature increases, is the volume of the
gas changing?

Answer

If the valume is kept constant, a graph of pressure
versus temperature will give a straight line going
through the origin. Hence, in this problem, the
volume must be changing.

Y
P B
A
0 TiK .
Figure 3.17.

Q1 I RN T TI I T ST SR a1 T Y]
Is the volume increasing or decreasing in Example
question 127

Answer

Draw the dotted lines through the origin and going
through points A and B, as shown in Figure 3.18.
These are isochoric lines, which means the
volume is constant along each one. Also, draw a
horizontal line from A to C as shown. Points A and
C have the same pressure. Since C is at higher
temperature, it must also be at higher volume.
Hence point B also has a higher valume than A.
The gas is therefore expanding.

0 K

Q14 P USSP E R LIS I A T
If the temperature of a gas is increased by a factor
of 4 and the density remains the same, what is the
new pressure of the gas?

Answer

Since the density stays the same, the volume stays
the same. Using & = constant we deduce that the
pressure must increase by a factor of 4,
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1 A volume of 2.00 L of a gas is heated from
20.0 °C 1o B0.0 °C at conslant pressure, What
is the new volume?

2 A sealed bottle contains air at 22.0 °C and a
pressure of 12.0 atm. If the temperature is raised
to 120.0 °C, what will the new pressure be?

3 Agasis kept at a pressure of 4.00 atm and a
temperature of 30.0 °C. When the pressure is
reduced to 3.00 atm and the temperature
raised to 40.0 °C, the volume is measured to
be 0.45 L. What was the original volume of
the gas?

4 An air bubble exhaled by a diver doubles in
radius by the time it gets to the surface of the
water. Assuming that the air in the bubble
stays constant in temperature, find by what
factor the pressure of the bubble is reduced.

5 12.0 kg of helium is required to fill a bottle of
volume 5.00 L at a temperature of 20.0 °C.
What pressure will the helium have?

6 What mass of carbon dioxide is required to fill
a tank of volume 12.0 L at a temperature of
20.0 °C and a pressure of 4.00 atm?

7 A flask of volume 300.0 mL contains air at a
pressure of 5.00 X 10° Pa, and a temperature
of 27.0 °C. If the flask loses molecules at a
rate of 3.00 x 10" per second, after how
much time will the pressure in the flask be
reduced to half its original value? (Assume
that the temperature of the air remains
constant during this time.)

8 The point in Figure 3.19 represents the state of

a fixed quantity of ideal gas in a container
with a movable piston. The temperature of the

LA

Figure 3.19 For question 8. -

gas in the state shown is 600 K. Copy the

diagram. Indicate on it the point representing

the new state of the gas after the following

separate changes.

(a) The volume doubles at constant
temperature.

ib) The volume doubles at constant pressure.

{c) The pressure halves at constant volume.

9 The point in Figure 3.20 shows the state of a
fixed quantity of ideal gas kept at a
temperature of 300 K. The state of the gas
changes and is represented by the dotted
route in the pressure-volume diagram. The
gas is eventually returned to its original state.

A
Piatm A B
4 o ----- —_— - -
I i
] 1
1 1
) 1
1 1
1 1
: b i = il e i
(] C
2 £ WL

Figure 3.20 For question 9.

(a) Find the temperature of the gas at the
corners of the rectangle on the pressure—
volume diagram.

{b) At what point on the dotted path is the
internal energy of the gas greatest?

10 Two ideal gases are kept at the same
temperature in two containers separated by a
valve as shown in Figure 3.21. What will the
pressure be when the valve is opened? (The
temperature stays the same.)

valve

6L E L
1 ]

12 atm
i aitm

Figure 3.21 For question 10.
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11 Figure 3.22 shows a cylinder in a vacuum,
which has a movable, frictionless piston at
the top. An ideal gas is kept in the cylinder.
The piston is at a distance of 0.500 m from the
bottom of the cylinder and the volume of the
cylinder is 0.050 m’. The weight on top of
the cylinder has a mass of 10.0 kg. The
temperature of the gas is 19.0 °C.

Figure 3.22 For question 11.

fa) What is the pressure of the gas?

(b) How many molecules are there in the gas?

{c) If the temperature is increased to 152.0 °C,
what is the new volume of the gas?

12 The molar mass of a gas is 28 g mol™'. A
container has 2.00 mol of this gas at 0.00 °C
and a pressure of 1.00 atm. What are the mass
and volume of the gas?

HL only

13 A container with a volume of 1.25 m* is
filled with hydrogen gas at pressure 2.35 atm
and temperature 25,0 °C.

{a) How many molecules are there?

The container has a safety valve that opens

releasing hydrogen whenever the pressure

exceeds 2.50 atm. The container is now

heated and then cooled down again. When

the temperature has fallen to 21.0 °C the

pressure is 2.05 atm.

{b) How many molecules escaped?

{c) What was the highest temperature the
hydrogen achieved during heating?

14 A container with a volume of 1.07 m* is filled
with a monatomic gas. The temperalure is
140 “C and the pressure 1.47 atm.

{a) What will the pressure be if the
temperature becomes 215 °C?

(b} If the temperature of the gas falls below
140 °C, a number of the atoms in the gas
will join together to form diatomic
molecules. When the temperature falls to
46.0 *C, the pressure is measured to be
only 0.760 atm. How many moles of the
diatomic molecules are there at 46.0 “C?.

15 A balloon has a volume of 404 m' and is
filled with helium of mass 70.0 kg. If the
ternperature inside the balloon is 17.0 °C, find
the pressure inside the balloon.

16 A flask has a volume of 5.0 x 107* m* and
contains air at a temperature of 300 K and a
pressure of 150 kPa.

(a) Find the number of moles of air in the flask.

(b) Find the number of molecules in the flask.

(c) Find the mass of air in the flask. You may
take the molar mass of air to be 29 g mol™'.

17 The molar mass of helium is 4.00 g mol™'.
(a) Calculate the volume of 1 mol of helium
atstp (T = 273 K, P= 1 atm).
(h) What is the density of helium at stp?
(c) What is the density of oxygen gas at stp
(the molar mass is 32 g mol~')?

18 (a) By finding the volume of 1 mol of helium
{molar mass 4 g mol™') at stp, 1 mol of
water (molar mass 18 g mol™', density
1.0 % 10" kg m~'} and 1 mol of uranium
{molar mass 238 g mol™’', density
18.7 % 10% kg m™}, find what volume
corresponds to each molecule.

(b) Assuming this volume to be a cube, find
the size of the side of this cube for each of
the three cases.

{c) How does this size compare with the
actual size of each molecule?

19 The density of an ideal gas is 1.35 kg m™".
If the temperature in kelvin and the pressure are
both doubled, find the new density of the gas.
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Thermodynamics

Thermodynamics deals with the conditions under which thermal energy can be
transformed into mechanical work. The first law of thermodynamics states that the
amount of thermal energy given to a system is used to increase that system’s internal
energy and to do work. The second law invokes limitations to how much thermal
energy can actually be transformed into mechanical work.

Dbjectives

By the end of this chapter you should be able to:

* understand the meaning of internal energy;

* calculate work when a gas expands or compresses using §1W = P il

* state the relationship between changes in the internal energy, the work
done and the thermal energy supplied through the first law of
thermodynamics, All = 0 — W;

* define the terms adiabatic, isothermal, isobaric and isochoric and show these
on a pressure-volume diagram;

« understand what is meant by irreversibility and disorder;

* understand that enfropy is a measure of disorder;

+ state the second law of thermodynamics;

* understand the meaning of energy degradation.

Internal energy | > Itfollows that the internal energy U of an

_ ideal monatomic gas with N atoms is given
In Chapter 3.1 we defined the internal energy of | by NE ,, that is

a gas as the total Kinetic energy of the molecules |

of the gas plus the potential energy associated U = 2NkT

with the intermolecular forces. If the gas is ideal,

the intermolecular forces are assumed to be or, equivalently,
strictly zero, and if the gas is also monatomic, all 3
the internal energy of the gas comes from the U =3nRT =3PV

random Kinetic energy of the atoms of the gas

{a non-monatomic gas would also have energy
due to the rotation and vibration of the atoms
within the molecule). The average kinetic energy
of the molecules is given by

where n is the number of moles. The change
in internal energy due to a change in
temperature is thus given by

AU = snRAT

= %n",-E == %kT
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We can use any version of this formula that is
convenient for a particular problem. As is seen
from this formula, the internal energy of a
fixed number of moles of an ideal gas depends
only on temperature and not on the nature of
the gas, its volume or other variables. In a
classic experiment, Joule allowed a gas to
expand freely from container A into container B
as shown in Figure 4.1.

vilve

A B

Figure 4.1 Joule's experiment in which internal
energy is shown to depend only on temperature.

When the valve separating the two containers is
opened, the gas fills the entire volume available
to it. The containers are well insulated so no
thermal energy enters or leaves the system.
Joule tried to observe a temperature difference
as the gas expanded and found none. Despite its
increased volume and reduced pressure, the
internal energy stayed the same. Actually, in a
real gas a small drop in temperature is
expected, since the molecules must do a certain
amount of work against the attracting
intermolecular forces which, although very
small, are not exactly zero. With more accurate
measurements than those available to Joule,
this temperature drop can be detected.

(In the case of polyatomic molecules, the
internal energy includes additional
contributions. A polyatomic molecule can
rotate as well as vibrate and these motions
require energy. The energy associated with
these motions must be included in the internal
energy of the gas.)

Example question

() EFFIFIE SRS LI IS TR T TSI T
A flask contains a gas at a temperature of 300 K. If
the flask is taken aboard a fast-moving aeroplane,

will the temperature of the gas increase as a resull
of the molecules moving faster?

Answer

No. The temperature of the gas depends on the
random motion of the molecules and not on any
additional uniform motion imposed on the gas as
a result of the motion of the container.

Systems

In thermodynamics we often deal with systems,
which simply means the complete set of objects
under consideration. Thus, a gas in a container
is a system, as is a certain mass of ice in a glass.
A system can be large - for example, it can be
the entire earth. Perhaps we may even consider
the entire universe as a system. A system can be
open or closed: mass can enter and leave an open
system but not a closed system. An isolated
system is one in which no energy in any form
enters or leaves. If all the parameters defining
the system are given, we speak of the system
being in a particular state. For example, an ideal
gas is specified if its pressure, volume and
temperature are specified. Any processes that
change the state of a system are called
thermodynamic processes. Thus, heating a gas may
result in changed pressure, temperature or
volume and is thus a thermodynamic process.
Doing work on the gas by compressing it is also
a thermodynamic process.

It is important to realize that internal energy is
a property of the particular state of the system
under consideration, and for this reason
internal energy is called a state function. Thus,
if two gases originally in different states are
brought to the same state (i.e. same pressure,
volume and temperature), they will have the
same internal energy irrespective of what the
original state was and how the gas was brought
to that final state. By contrast, thermal energy
and work are not state functions. We cannot
speak of the thermal energy content of a system
or of its work content, Thermal energy and
work are related to changes in the state of the
system not to the state itself.
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Work done on or by a gas

Imagine that we are given a quantity of a gas in
a container with a frictionless, movable piston
and that the gas is compressed slightly by
exerting a force on the piston from the outside,
as in Figure 4.2.

during the
compression the
pressure of the
£as can be
considered
constant

Figure 4.2 When the piston is pushed in by a
small amount, work is being done on the gas.

If the pressure in the gas initially is P, and the
cross-sectional area of the piston is A, then the
force with which one must push is PA. If the
piston moves an infinitesimal distance §s, the
work done is

SW = Fés
= PAés

But Ads is the amount by which the volume of
the gas has been reduced, 3V,
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Note that, as soon as the piston is moved, the
pressure in the gas will, in general, change. This
is why it is necessary to give the expression for
work done in the form of infinitesimal
quantities, as above. To find the work done
under a large change of volume one must use
calculus to integrate the expression given
above; the pressure, and hence the force that
must be exerted, is not constant. We will not be
concerned with this here. There is, however, one

rather simple case where work done can be
easily calculated. This is the expansion or
compression of a gas at constant pressure. In
this case, the work done is

W=PFP(Voa=W)

where (1> — V) is the total change in volume
and need not be small.

Example question

Q) BRI RTINS T
A gas is compressed at constant pressure

2,00 x 10° Pa from a volume of 2.00 m* to a
volume of 0.500 m*. What is the work done? If
the temperature initially was 40 °C what is the
final temperature of the gas?

Answer

Since the compression takes place under constant
pressure, the work done is

P = change in volume = 2.00 x 10°Pa x 1.50m’
= 3.00 x 107

The final temperature is found from

onsian
T

that is
2 _05
ETE R §
giving

T=7825K=-195"C.

The work done has a simple interpretation on a
pressure-volume diagram: in Figure 4.3, the
volume of a gas changes by an infinitesimal
amount §V, and the work done is thus P§V.
This is approximately equal to the area of the
strip whose width is §1 and height Py, where P,
is the pressure of the gas as given by the graph
during the change. Even though P changes as
well during the change of volume, we can
consider it to have the constant value given by
Py on the graph.
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Figure 4.3 (a) Even though the pressure is not
constant, the work done can be calculated for an
infinitesimal volume change by considering that
for such a small change the pressure is constant.
{b) For a change in volume that is not small, the
work done is found from the area under the
curve in the pressure—volume diagram.

The pressure-volume diagrams in Figure 4.4
show an arbitrary series of changes on an ideal
gas that begin and end in the state A (diagram (c)).
The gas expands from A to B and thus the work
done by the gas is the area between the curve
and the V' axis from A to B (diagram (a)}. From B
to A, the gas is being compressed so the work is
being done by an outside agent. That work
equals the area between the curve and the V' axis

{diagram (b)).
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Figure 4.4 For a closed loop in a pressure-volume

diagram, the work done is the area of the loop.

A number of interesting processes can be
identified on a pressure-volume diagram. A
process in which the gas expands or contracts
at constant pressure is called an isobaric process.
On a pressure-volume diagram it is represented
by a horizontal straight line (Figure 4.5a). A
process in which the volume of the gas stays
fixed is called isochoric and is represented by a
vertical line (Figure 4.5b).

Fa ph

isobaric isochonc

v v
(@) (b)
Pa
P-.ik
isothermal
adiabatic
adiabatic izothermal
) v v

Figure 4.5 Isobaric, isochoric, isothermal and
adiabatic processes.
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Since pressure is fixed in an isobaric process,
the work done is easy to calculate, W = PAV,
Note that in an isochoric process no work is
done on or by the gas.

Apart from isothermal processes, which we met
earlier, the last process of interest is called
adiabatic and is a process during which the gas
does not absorb or give out any thermal energy,
so (0 = 0 (Figure 4.5¢, d). We have also drawn an
isotherm to show that the adiabatic curve is
steeper than an isotherm going through the
same point. In general, an isothermal process
takes place slowly and the system must be in
thermal equilibrium with its surroundings; an
adiabatic process takes place very fast and the
system is not in thermal equilibrium with its
surroundings (see Figure 4.6). To help understand
the difference between adiabatic and isothermal

processes better, we will introduce the first law of

thermodynamics here.

slow, fast, cylinder

cylinder not well insulated

insulated
Figure 4.6 Isothermal and adiabatic systems.

The first law of thermodynamics
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This formula is known as the first law of
thermodynamics and is a consequence of the
law of conservation of energy. This law also
incorporates what we stated earlier: namely
that internal energy is a state function whereas
thermal energy and work are not.

Example questions

()} Tt I T SIS ISR S M IORE S o
A gas in a container with a piston expands
isothermally (i.e. the temperature stays constant).
If thermal energy Q@ =10° | is given to the gas,
what is the work done by the gas?

Answer

The pressure is not kept constant during the
expansion, so we cannot use the formula we
derived for work done. But since T = constant, it
follows that AL = 0 and since

AU= Q- W
we must have

W=Q

S0, the work done by the gas in this case is equal
to the thermal energy supplied to it: 107 |

(33 B1oanreea e 1 LI ER AT PRI MIPELERIIEIT0E ]
A gas expands adiabatically {i.e. it does not
receive or lose thermal energy). Will its
temperature increase or decrease?
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Answer
Again using the first law with §Q = 0 we find

U= —4W

The gas expands and so it is the gas that does the
work, that is

SW=0
Therefore
U <=0

That is, the internal energy and thus temperature
decrease. Similarly, if the gas is compressed
adiabatically, the temperature will increase.

This explains why the adiabatic curve starting
from a point on the pressure—volume diagram is
steeper than the isothermal curve starting from
that same point (see Figure 4.7). Consider an
adiabatic and an isothermal process, both
starting from the same point and bringing the gas
to the same (expanded) final volume. Since the
adiabatic process will reduce the temperature
and the isothermal process will not, it follows
that the pressure of the final state after the
adiabatic expansion will be lower than the
pressure of the state reached by the isothermal
expansion. Hence, the adiabatic is steeper.

£
P

isothermal

adiabatic

w

Figure 4.7.

()fF TR L E TN FTTS T ¥
A monatomic gas is kept at constant pressure

3.00 x 10° Pa, initial volume 0.100 m? and
temperature 300 K. If the gas is compressed at
constant pressure down to a volume of 0.080 m’,
find:

{a) the work done on the gas;

(b) the thermal energy taken out of the gas.

Answer

(a) The work done is

3.00 x 10® % 0,020 = 6.00 x 10}
(b) From the first law

Q=AU+ W

so to find the thermal energy taken out we
must first find the change in the internal
energy of the gas. Since

=3INKT or U=3PV
it follows that
AU = INKAT

or (which is more convenient here)

Al = %[PV}HMI - %‘PV:I'"'B"I

Thus
Al =-9.00 % 10"]
Finally

Q= —9.00 x 10° — 6.00 x 10°
= —1.5 x 10%)

(Mote that AL/ was taken as negative since the
temperature dropped.) The negative sign in Q
means that this thermal energy was removed
from the gas.

The second law of

thermodynamics

There are many processes in thermodynamics

that are consistent with the first law but are
nonetheless impossible. A few of these processes
involve:

+ the spontaneous (i.e. without the action of
another agent) transfer of thermal energy from
a cold body to a hotter body;

* the air in a room suddenly occupying just one
half of the room and leaving the other half
empty:;

» a glass of water at room temperature suddenly
freezing, causing the temperature of the
room to rise,
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These processes do not happen because they are
forbidden by a very special law of physics - the
second law of thermodynamics.

Order and disorder

To begin our discussion of this law, consider a

1 kg mass moving at 10 m s~ '. Friction brings it
to rest and so the initial kinetic energy of 50 ]
has been lost. Suppose that all of this energy
went into the internal energy of the body. This
means that the molecules now vibrate about
their equilibrium positions faster than before.
The original kinetic energy of the ball was
associated with the ordered motion of the body
as a whole. Every molecule of the body moved
forward with the same component of velocity in
addition to the random or disordered motion
associated with the vibrations of the atoms. (See
Figure 4.8.)

Figure 4.8 The ordered mechanical energy of the
ball has been converted into disordered
internal energy.

The mechanical (ie. kinetic) energy of the ball
was totally converted into disordered energy as a
result of friction. There is an irreversibility in
this conversion of energy. The ball that has been
brought to rest by friction is not expected to
convert part of this disordered motion into
ordered motion and start accelerating back
towards the direction it came from. The original
kinetic energy cannot be recovered from the
internal energy of the ball. Because this energy
cannot be recovered, we say that it has been
degraded. Nothing in the laws of physics we
have seen so far actually prevents the ball from
accelerating backwards. What does prevent it is
the second law of thermodynamics.

e
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Reversibility

Let us continue with a discussion on
reversibility and irreversibility, concepts that, as
we will soon see, are intimately related to the
second law of thermodynamics. All natural
processes are irreversible - they lead towards
states of increased disorder. An irreversible
process captured on film would look absurd if
the film were to be run backwards. A glass of
water looks ordered just before it slips from
your hand and falls to the floor, breaking into
many pieces. Capturing this on film and then
running it in reverse would show the pieces of
glass and drops of water assembling themselves
into an unbroken glass full of water. It looks
like thermodynamics is related to the arrow of
time - the direction in which natural processes
take place. A reversible process for a system
consisting of a large number of molecules is
reversible only as an idealized approximation.
We may formally define a process as irreversible
if it is impossible to reverse the process by an
infinitesimal change in the conditions under
which the change takes place. Thus, a hot body
at 50 °C placed in contact with a colder body at
20 °C results in thermal energy flowing from
the hot to the cold body. This process is
irreversible since it is not possible to reverse the
flow of thermal energy by small changes in the
temperatures of the two bodies. On the other
hand, if the two bodies have temperatures that
differ by an infinitesimal amount, then a small
change in the temperature of one body would
reverse the flow of thermal energy. Similarly,
consider a gas expanding isothermally. The
piston is moving out at infinitesimal constant
speed and at all times we have thermal and
mechanical equilibrium. The temperature of
the gas is the same as that of its surroundings
and the pressure exerted on the piston by the
gas is matched by an equal pressure from the
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outside. An infinitesimal change in these
conditions might involve slightly increasing the
outside pressure so that the gas will now start
compressing. The outside pressure will, of
course, increase only momentarily so that the
expansion is reversed and when that happens
the two pressures will again be made the same.
The process just described is a reversible
process.

Irreversibility can be quantified. There exists a
quantity called entropy which, like internal
energy, is a state function: that is, once the state
of the system is specified, so is its entropy.
Entropy depends only on the state of the system
and not on how it got there.
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If thermal energy is given to the system,

40 = 0 and entropy increases. If thermal
energy is removed, 5( = 0 and entropy
decreases. For a reversible process that returns
the system to its original state, 5 = 0. One
such example is the isothermal expansion

of a gas and the subsequent isothermal
compression back to the initial state, Since the
expansion and compression are isothermal,
leaving the temperature constant, we may
write

16Q|
35 = —
T
during expansion and
15Q]
35".! = ="
’ T

during compression. (The gas receives thermal
energy upon expanding and discards thermal
energy upon compressing — use the first law of

thermodynamics.) The net entropy change is
thus zero. Since natural processes are
irreversible, we may claim that these processes
increase the entropy of the system under
consideration and those theoretical processes
that are reversible leave the entropy of the
system unchanged. (In general, we need
calculus to evaluate the entropy changes in a
system since the formula above is valid for
small amounts, §Q, that do not change the
temperature. Care must also be taken to
evaluate the change in entropy along reversible
paths connecting the initial and final states of
the system — we will not spend any time on
these technical problems here.)

Let us apply the expression for 45 given above
to the case of the flow of thermal energy
between a hot body A and a cold body B. If a
very small quantity of thermal energy 5§Q flows
from the hot to the cold body, the total entropy
change of the two bodies is

80 80
B T
|
‘m('ﬁ“ﬁ)
=45=10

(the temperature of each body is assumed
unchanged during this infinitesimal exchange
of thermal energy) and in fact thermal energy
will flow from the hot body into the cold one
(Figure 4.9a). The opposite (Figure 4.9b) does not

bt cald

(b) heere entropy decreases —

hence this process does not

happen

Figure 4.9 (a) When thermal energy flows from a
hot to a cold body, the entropy of the universe
increases. (b) If the reverse were to happen
without any performance of work, the entropy
would decrease, violating the second law.

{a) here entropy
ingreases
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happen because it corresponds to a decrease in
the entropy of the system:

4Q  6Q
35 = —
5 Til Tc
1 1
a(-7)
=485 =0

Similarly, when thermal energy is given to a
solid at its melting temperature, the solid will
use that thermal energy to turn into a liquid at
the same temperature. The entropy formula
again shows that the entropy increases as the
solid absorbs the latent heat of fusion. The
same is also true for vapoerization.

This allows us to state the second law of
thermodynamics in its general form:

D-’IhE'enhopyﬁf’an*mn]ateﬂ sjrmmnever “Tree

-------

: 'ﬂEmaSES

A number of equivalent statements of the
second law also exist. If one of these statements
is accepted, the others can be proved from it.
The statement due to Clausius is:

F&mlmpbiﬁﬂ:-lﬁfhrﬂmtmareﬁérgym

The statement of the second law from Kelvin
and Planck is thar:

}Itigimpmblefarah@ateﬂﬁﬂ&mrkms
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Equivalence of the different statements

of the second law

A device that converts thermal energy (heat)
into mechanical energy (work) is called a heat
engine. Consider an engine working between a
hot and a cold reservoir, as shown in Figure
4.10. The engine is enclosed in the dotted line
and in fact consists of two heat engines. The
first engine (left) converts all the thermal

Db;li'ﬁ- Sodm i ot =53 _-f_i_;_- ..... :.':

energy extracted from the hot reservoir into
mechanical energy without rejecting any
thermal energy into the colder reservoir. This
engine thus violates the second law of
thermodynamics in its Kelvin-Planck form. If
this mechanical energy is then fed into the
second heat engine, we see that the net result
of the combined engine (in the dotted line) is to
transfer thermal energy from a cold to a hotter
reservoir without the performance of work. And
this violates the Clausius formulation of the
law. By arguing in this way it can be shown that
all the formulations of the second law are
equivalent to each other.

hot reservoir

cold reservioir

Figure 4.10 A heat engine that transfers thermal
energy from a cold to a warmer reservoir
without the performance of work is impossible.

An example of a heat engine

Consider now a heat engine whose working
substance is an ideal, monatomic gas and is
represented on a pressure-volume diagram by
the cycle shown in Figure 4.11.

0.10 040 vim?

Figure 4.11 A cycle on a pressure-volume diagram,
consisting of two isobaric and two isochoric
Processes.
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We are given that the pressure at A (the

starting point of the cycle) is 4.0 atm, the
volume is 0.10 m* and the temperature is 800

K. The volume at B is 0.40 m” and the pressure

at Cis 2.0 atm. We are asked to find the
temperatures at points B, C and D, the !
amount of thermal energy given to and taken |
from the gas, the internal energy changes and |
work done along each leg of the cycle. Finally, ‘
we want to calculate the efficiency of this
engine.

The temperatures are easily found by use of
the gas law, PV = RnT. Comparing A and B we
see that (use the ideal gas law) since the
volume increases by a factor of 4 at constant
pressure, the temperature at B must be

4 x 800 K = 3200 K. Comparing B with C we
find the temperature at C to be 3200 x l; K=
1600 K. That at D is half of that at A, namely
400 K.

From the data at point A we can find the
number of moles of the gas, namely

PV
~RT

4 x 10° % 0.10
831 % 800

n

(note that we converted atmospheres to pascal).

This can be used to find the internal energy
changes:

along AB, AU = jRnAT = 180k

along BC, AU =-120kJ |
along CD, AU =-90kJ

along DA, AU =30kJ

There is no work done along CB or DA, since the |

volume stays the same along these legs.
Along AB the gas does work
Wag = PAV =4.0x 10° x 0.3) = 120k)

Along CD the work is done on the gas
Wep = =2 x 10° x 0.30) = —60kJ

To find the thermal energy taken in or out we will
use the first law, Q = AU + W, along each leg:

along AB, Q = 180kJ + 120kJ = 300kJ
along BC, Q= —120k

along CD, Q= -90kJ—60k)=—150k
along DA, Q =30k)

(Positive Q means thermal energy is given to
the gas, negative ( implies thermal energy
taken out of the gas.)

The net thermal energy given to the gas is
300k) — 120 k) — 150k) 4+ 30kJ) = 60kJ
The net work done by the gas is
120k) — 60 k) = 60 kJ

as it should be: the net work done is equal to
the net thermal energy into the gas. It also
equals the area of the loop, as you can check.
The efficiency of this engine is the ratio of the
net work done to the amount of thermal energy
into the engine, that is

60k
330k

{The highest and lowest temperatures achieved
during this cycle are 3200 K and 400 K.}

0.18

More on the second law

The second law of thermodynamics leads, as we
have seen, to an increase in the entropy in the
universe, a state of increased disorder. Many
processes that are possible under the first law
(i.e. the law of energy conservation) do not
happen because they would violate the second
law. For example, a glass of water at 0 °C has
never been observed to freeze into ice by giving
thermal energy into the warm surroundings,
making them even warmer. To say that this
violates the second law does not imply that
such a process is impossible — only very
unlikely. The probability of this happening is

pﬁe%}:

_ad
= g AT

:}g_

=g
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For 1 kg of water this is about e~ 0% _ an

infinitesimal number.

Life has evolved from less ordered to more
ordered species. This does not violate the
second law. Although the entropy of any one
particular species has decreased, the metabolic
processes that have led to the growth of that
species involve a larger entropy increase, so the
overall entropy has increased.

Degradation of energy

Thermal energy flows, as we have seen, from
hot to cold bodies, The difference in
temperature between the two bodies initially
offers us the opportunity to run a heat engine
between those two temperatures, extracting
useful mechanical work in the process. With
time, the two bodies will approach the same
temperature and the opportunity for using
those two bodies to do work will be lost. Thus,
the flow of thermal energy from the hotter to
the colder body tends to equalize the two
temperatures and deprives us of the
opportunity to do work.

It is a consequence of the second law that
Enargfwﬁﬂéalwajtsheﬂngmnsm :
’uecameslessuseful thulsmllgdamw

o LA

. degradation.

The energy of the universe tends to move from
highly ordered, useful forms to disordered,
useless forms. If the second law is applied to the
universe as a whole, then since it has nowhere
to receive thermal energy from or give thermal
energy away to, its expansion is adiabatic.
Despite the small-scale non-uniformity of the
universe (planets, solar systems, stars, galaxies,
clusters of galaxies} we can still think of it on a
very large scale as an expanding gas. If so, then
by the first law of thermodynamics

AU=0-W=10

and so the temperature of the universe is
decreasing. The universe is filled with
electromagnetic radiation, produced during the

original explosion (the Big Bang) that created
the universe some 14 billion years ago. The
spectrum of this radiation (i.e. how much
energy is stored per interval of wavelength) is a
direct function of the ambient temperature
that this radiation finds itself in equilibrium
with. Today, measurements of this temperature
through the spectrum of the ambient radiation
give it a value of only 2.7 K. The temperature of
the universe, which originally was enormous, is
constantly decreasing as a result of the
expansion of the universe. If this expansion
continues, the temperature will keep
approaching absolute zero, leading to the "heat
death of the universe’.

1 A gas is compressed isothermally so that an
amount of work equal 1o 6500 | is done on it.
How much heat is taken out or given to the
pas?

2 A gas expands at a constant pressure of 5.4 atm
from a volume of 3.6 L to a volume of 4.3 L.
fa) How much work does the gas do?

{b) If the initial temperature of the gas was
310 K, find the final temperature,

3 In an adiabatic expansion of an ideal gas
initially at 280 K, 2.2 L and 4.8 atm, an
amount of work of 350.0 | is done by the gas.
Find the final temperature of the gas.

4 An ideal gas is kept at constant pressure

6.00 x 10° Pa, initial volume 0.200 m” and

temperature 300.0 K. If the gas expands at

constant pressure to a volume of 0.600 m”,

find:

(a) the work done by the gas;

{b) the temperature of the gas at the new
volume;

(c) the change in the internal energy of the gas;

() the thermal energy taken out of or put into
the gas.

5 Two moles of an ideal gas are kept in a
container with a movable piston at a pressure
of 5.0 x 10* Pa and a temperature of
300.0 K. The gas is heated so that the
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temperature is increased to 400.0 K without

changing the volume. Find:

{a) the thermal energy that must be provided
to the gas;

(b) the new pressure of the gas;

{c) the change in the internal energy of the gas.

The gas is then allowed to expand at constant
pressure until the volume doubles.
(d) What is the new temperature of the gas?

6 Prove, using calculus, that the work done by
a gas at temperature T during an isothermal
expansion from a volume V, 1o a volume V4 is
\5
W= RnTlI (—_)
n n V:

{where n is the number of moles in the gas).

In an experiment in which a number of coins
are tossed, the entropy of a given outcome
may be defined by kInN, where N is the
number of ways a particular outcome may be
realized. Ten coins are thrown and the
outcome is 5 heads and 5 tails. In a second
throwing the outcome is 3 heads and 7 tails.
(al What is the change in entropy?
(b) Does this violate the second law of
thermodynamics? Explain.

Find the change in entropy of 10.0 g of water
that boils into steam at 100 °C. (Latent heat of
vaporization of water = 2257 kikg ')

9

10

11

12

13

Find the change in entropy of 10.0 g of water
that freezes into ice at 0.0 °C. (Latent heat of
fusion of ice = 334. 4kl kg™'.)

A gas is suddenly heated from A to B from a
pressure of 2.0 atm and temperature 300 K to
a pressure of 5.0 atm. The volume stays
constant at 2.0 L. From B the gas expands
isothermally to a volume of 5.0 L at C. The
gas then returns to its original state at A by
an isobaric compression al a pressure of
2.0 atm.

(a) Sketch these changes on a pressure—
volume diagram.

{b) Find the temperature of the gas at B.

{c) Find the internal energy change and the
thermal energy given to or taken from the
gas from A to B.

(d) Far the leg from C to A find (i) the work
done, (ii) the change in internal energy
and (iii) the thermal energy given to or
taken from the gas.

Can you cool down your kitchen by leaving

the refrigerator door open? Explain your

ANSWER

In an isothermal expansion all the thermal

energy that is given 1o a gas is converted to

work as the gas expands. Why does this not
violate the second law?

Explain (in terms of entropy) why the

following processes are irreversible:

(a) the lid of a container of gas is opened and
the gas leaks out;

(b} twao different liquids mix;

(c) an ice cube melts in a warm room.
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Simple harmonic motion

Oscillations are a very common phenomenon in all areas of physics. They are interesting
in their own right, but they are also needed to understand many diverse phenomena,
from sound to light. This chapter introduces a very special and important type of
oscillatory motion, called simple harmonic motion (SHM). We discuss the case of free
oscillations in detail, and qualitatively discuss the effect of damping and of an external
periodic force on the oscillations.

Objectives

By the end of this chapter you should be able to:

« recognize the occurrence of simple harmonic motion through the
defining relation, a = —e’x;

» understand the terms amplitude, displacement, angular frequency, frequency,
period and phase;

= use the equations x = Acos(w! + ¢),v = —w Asin(w! + ¢),

V= —l_-mJAT—TJ and T = %
= discuss the properties of simple harmonic motion from graphs;

+ solve problems with kinetic energy and elastic potential energy in simple
harmonic motion;

+ understand that in simple harmonic motion there is a continuous
transformation of energy, from kinetic energy into elastic potential energy
and vice versa;

« describe the effect of damping on an oscillating system;

» understand the meaning of resonance and give examples of its
OCCUTTEnCE,

» discuss qualitatively the effect of a periodic external force on an oscillating
system.

05tillati0n5 ' oscillation. This is the time taken to move from
| one extreme position of the motion and back

A typical example of an oscillation is provided | to the same position. This is called the period

by the simple pendulum, i.e. a mass attached to | (see Figure 1.1). We will mostly be interested

a vertical string. When the mass is displaced in those oscillations where the period stays

slightly sideways and then released, the mass constant, i.e. when successive oscillations take

the same time to complete. Many oscillations do
motion is repetitive, i.e. periodic, and the body not share this property. For example, the leaf of
moves back and forth around an equilibrium a tree blowing in the wind oscillates, but its
position. A characteristic of oscillatory motion oscillations do not have a fixed period, and the
is the time taken to complete one full | amount by which the leaf moves away from its

will begin to oscillate. In an oscillation the
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Figure 1.1 A full oscillation lasts for one period. At the end of a time interval equal to one
period T, the system is in the same state as at the beginning of that time interval.

equilibrium position is not a regular function
of time.

Examples of oscillations include:

* the motion of a mass at the end of a horizontal
or vertical spring after the mass is displaced
away from its equilibrium position;

* the motion of a ball inside a bowl after it has
been displaced away from its equilibrium
position at the bottom of the bowl;

* the motion of a body floating in a liquid after
it has been pushed downwards and then
released;

* a tight guitar string that is set in motion by
plucking the string;

* the motion of a diving board as a diver
prepares to dive;

* the motion of an aeroplane wing;

+ the motion of a tree branch or a skyscraper
under the action of the wind.

The examples mentioned above are all
mechanical, but there are of course other kinds
of oscillation, for example electrical.

A very special periodic oscillation is called
simple harmonic motion (SHM) and is the
main topic of this chapter. We shall consider
three examples of SHM in the main text, and
some others in the example questions.

Kinematics of simple
harmonic motion

A mass at the end of a horizontal spring
We consider first a particle of mass m that is
attached to a horizontal spring of spring
constant k (Figure 1.2). If the particle is moved a
distance A to the right and is then released,
oscillations will take place because the mass
will be pulled back towards the equilibrium
position by a restoring force, the tension in the
spring. The particle will perform oscillations
about its equilibrium position (the vertical
dotted line) between the extreme positions of
the second and last diagrams in Figure 1.2.

Consider the particle when it is in an arbitrary
position, as in the third diagram in Figure 1.2.
At that position, the extension of the spring is
x. The magnitude of the tension F in the spring
is therefore (by Hooke's law) equal to F = kx,
where k is the spring constant. The tension
force is directed to the left. Assuming that
displacement (i.e. distance moved) to the right
of the equilibrium position is taken as positive,
then

ma = ~kx

since the tension force is directed to the left
and so is taken as negative, This equation can
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dx=4,1=0

EXensIon v

x=0, 1=T}4

x==A,1=Tf2

Figure 1.2 The mass-spring system. The net force on the body is
proportional to the displacement and opposite to it

be rewritten as
k

0g=——x
m
If we define »® = % we then have the generic

form:

a4 = —aw'x
The constant « is known as the angular
frequency of the motion. Its unit is the inverse
second, s™'. The equation a = —w°x is the
defining relation for SHM. Thus we can say the
following:
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Therefore, in general, to check whether SHM
will take place, we must check that: (1) we have
a fixed equilibrium position; and (2) when the
particle is moved away from equilibrium, the
acceleration of the particle must be both
proportional to the amount of displacement
and in the opposite direction to it.

Supplementary material

SHM is defined by the relation a = —w’x. In
calculus, the acceleration is written as a = ﬁ
and so the defining relation becomes

d:x - di
This is a second-order differential equation
whose general solution is

x = A cosfed + d)
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where A and ¢ are constants. To check that
x = A cosiet + ¢)is a solution, we calculate both

dx ;
If = —Aw sin(wt + ¢)

and
d*x
dr?
so that
dZ
dae

= —Aw’ cos(wt + ¢}

+w'x = — Aw’ cos(wt + ¢)
+ w’[A cos{wt + ¢)] =

The meaning of the constants A and ¢ is the
fallowing:

* The maximum value of the cosine function is
1, and so the maximum value of x is A. Thus
A is the amplitude of the motion, the
maximum displacement.

= The value of ¢ determines the displacement
at t = 0. At t = 0 we have that x = Acos¢.
If ¢ =0, then at t = 0 we have x = A.
If ¢ = i, then at t = 0 we have
x = A cos= 0, and s0 on. The angle ¢ is
called the phase of the mation.

Given two oscillations with phases ¢, and ¢,
the difference |¢; — ¢, is called the phase
difference between the two oscillations.

The velocity is given by
v=5 = —Awsin(wt + ¢). Given that
x = Acos{wt + ¢), we know from
mathematics that this is a periodic function with
period T given by

2

T=—
43

The period is the time to complete one full
oscillation. We have the important result that the
period in SHM depends only on @ and not on
the amplitude or the phase.

.............

an:[p-emd‘r nfthemmattaimplace

~ are given by
x = Acos(al + @)
v = —wAsin@l + )
[ R
: L -4
“where A, the amplitude, is the maximum
displacement, and ¢, the phase angle, is
“determines the initial displacement. ftis
a characteristic of SHM that the period is
independent of the amplitude A and the
phase ¢. We will mostly be working with
. situations where the phasg angle is zero,
. -_m which case
X = Acos(@t)y = —wASsinat)
The typical behaviour of the displacement,
velocity and acceleration as functions of time
when ¢ = 0 is shown in Figures 1.3 and 1.4,

We can see how the three graphs are related
without using calculus as follows. We

must recall that the gradient of the
displacement-time graph gives the velocity, and
the gradient of the velocity-time graph gives
the acceleration. Let us begin with the graph
showing the variation with time | of the
displacement x. We must examine how the
gradient of this graph changes as time goes on.

Att = 0, the gradient is zero, and soatf =0
the velocity v is zero as well,

Fromt! = 0tol = T /4, the gradient is negative,
so the velocity is negative. The gradient assumes
its most negative value at ! = | /4, which means
that at this time the velocity is most negative.
(The gradient is decreasing in this interval, so
the velocity is decreasing as well.

Fromt =T /4 tol =T /2, the gradient of the
displacement graph is negative and becomes
zero at f = T /2. The velocity is therefore
negative in this interval and becomes zero at
t = T /2. (The gradient is increasing in this
interval because it is getting less negative, so
the velocity is increasing.)

From! =T/2 to! = 3T /4, the gradient is
positive and reaches its most positive value at
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Figure 1.3 Graphs showing the variation with time
of the displacement, velocity and acceleration in
SHM.

t = 3T /4. The velocity in this interval is
therefore positive and has a maximum value at
I = 3T /4. (The gradient is increasing in this
interval and so is the velocity.)

From{ =37 /4wt =T, the gradient is positive
but decreases to zero at | = 7. In this interval
the velocity is therefore positive and becomes

» Lme, !

* Lme, |

4 displacement acceleration

velocity

Figure 1.4 The variation of displacement, velocity
and acceleration in SHM on the same axes.

zero at t = T . (In this interval, the gradient is
decreasing and so is the velocity.)

In this way we begin to build up the graph
showing the variation with time { of the velocity
v. Having established the velocity-time graph,
we may repeat the process above to determine
the graph showing the variation with time of
the acceleration a. This is left as an exercise.

Example questions

Mote: In this chapter, all calculations performed
with the calculator must be done with the
calculator in radian morde.

Q1 [ # e g S rE s s e i FoSEA_FTiiETiui-ERinry
A particle undergoes SHM with an amplitude of
4.0 mm and angular frequency of 2.0 s™'. Al

t = 0, the displacement is j;% mm. Write down the
equation giving the displacement for this motion,

Answer

We use x = A cos(wt + ¢), with w = 2,05 and
A= 4.0 mm. So we have

x = 4.0 cos(2.0f + ¢)

where t is in seconds and x is in millimetres. At
t =0 we have

4.0

— = 4.0 cos ¢
N

which implies

1
COS¢ = —

V2
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or

_JT

Hence the equation is

x=4.0 cas(Z.ﬂ!‘ + ;)

Q! T ST IS I ST TR

A particle undergoes SHM with an amplitude of

8.00 cm and an angular frequency of 0.250 s~ Al

t =0, the velocity is 1.24 cms™'.

(a) Write down the equations giving the
displacement and velocity for this motion.

(b) Calculate the initial displacement.

{c) Calculate the first time at which the particle is
at x = 2,00 cm and x = -2.00 cm.

Answer

(a) We have that x = A cos(at + ¢) and therefore
v = —wA sin(wt + ¢}, At t =0 we therefore
deduce that

1.24 = -0.250 %= 8.00 sin ¢

which gives

¢ ==0.669 rad

Hence the displacement is

x = 8.00 cos(0.250f — 0.669)

and the velocity is

v =-2.00sin(0.250f — 0.669)
{b) Att =0, we have

x = 8.00cos(-0.669) = 6.28 cm
() From

2.00 = 8.00 cos(0.2501 — 0.669)

we find

cos(0.250f — 0.669) = 0.25

and thus

0.250t — 0.669 = cos™'(0.25) = 1.32

which gives

t=7955

From

-2.00 = 8.00cos(0.250t - 0.669)

we find

cos(0.250t — 0.669) = —(0.25

and thus

0.250t — 0.669 = cos™'(-0.25) = 1.82
which gives

It is convenient also to define the frequency f
of the motion. This is defined as the number
of oscillations per second. Since we have
one oscillation in a time equal to the period T,
the number of oscillations per second is ;
and so

1

f=7

The unit of frequency is the inverse second,
which is called the hertz (Hz). It follows from
T = 2= that

w= 2nf

A particle in a bowl

We consider now a particle of mass m that is
placed inside a spherical bowl of radiusr, as
shown in Figure 1.5. The first diagram shows
the particle at its equilibrium position E at the
bottom of the bowl. In the second diagram
the particle is shown displaced away from
equilibrium. The particle will be let go from
that position P. In the absence of friction, the
particle will perform oscillations about the
equilibrium position. Will these oscillations
be simple harmonic? To answer this question,
we must relate the acceleration to the
displacement.

E

Figure 1.5 A particle in a bowl. The equilibrium
position E is at the bottom of the bowl. The
particle is released from P.
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The forces on the particle are its weight mg and
the reaction force R from the bowl, as shown in
Figure 1.5. The displacement of the particle is
the length of the arc joining points E and P, i.e.
x =r#, where # is as shown in the diagram. The
force trying to bring the particle back towards
the equilibrium position is found by taking
components of the weight along the dashed set
of axes shown in Figure 1.6.

mg “'

Figure 1.6 The forces on the particle in a bowl.

The force trying to bring the mass back is the
component mg sin f:

F =ma = -mgsiné
which implies that
1 = —gsind

Bringing in the displacement we see that

f=-— sin(i)
— _g .

The acceleration is opposite to the displacement
x, but it is not proportional to it. We will have
oscillations, but they will not be simple
harmonic.

Let us now assume that the amount of
displacement x is actually quite small compared
to the radius of the bowl r. Then 7 is a small
number and we know that

sin () = * in that case. Then, approximately,

X
a=-g—= —'q—x
=T r
and so
a = -w’x

where in this case w” = £. So we will have SHM
but only for very small amplitudes. For small
oscillations the period is then

T=2.‘-’I’J?—
g

The simple pendulum

We consider next a mass m that is attached to a
vertical string of length L that hangs from the
ceiling. The first diagram in Figure 1.7 shows
the equilibrium position of the mass. In the
second diagram, the particle is displaced away
from the vertical and is then released.

L -~
- o :
cqmll_b:num mgsinfls mgeosi
position -

-
-

mg \

Figure 1.7 The equilibrium position of the
pendulum, and the forces on the mass when the
pendulum is displaced.

The force pushing the particle back towards the

equilibrium position is mg sinf and so we have
ma =-mgsinf = a=-gsing

The displacement is x = L&, where L and & are
as shown in Figure 1.7, and so

0= — Sin(i)
= —g T
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Again, the acceleration is not proportional to the
displacement, x. But if x is small compared to
L, then sin ({] = ¥ and so

ﬂ=—m2x with cd‘z:‘%

For small oscillations the period of the
pendulum is then

(b) Using the propagation of errors as in Chapter 1,
we have 41 = 1 &L From this we find
AL =1 x 4.00% = 2.00%. Hence

T

2.00 2.00
= e o 2 100 = 002 s
100 ~ 100~

The new period is then T = 1.02 s,

AT
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When a body is immersed in a liquid of density p
it experiences an upward force called the
upthrust, which is given by

U= pgViem

where V., is the volume of the body immersed
in the liquid. A rectangular body is floating in a
liquid of density p as shown
in Figure 1.8. The body is

pushed downwards by a
distance A and is then

released. Show that the

.........

Example questions

{13 msssrsereneyevvesrrsryyeTT I EETIIET RS

(a) Calculate the length of a pendulum that has a
period equal to 1.00 s.

(b) Calculate the percentage increase in the
period of a pendulum when the length is
increased by 4.00%. What is the new period?

Answer

{a) From the text, the period of the pendulum is
givenby T = 2::‘/% and so

g
=1
 1.00* x 9.81
- 477

=0.248 m

Figure 1.8 (a) A rectangular body floating in a liquid, with depth d
immersed. (b) The body after it has been pushed down by a distance A.

body will perform simple
harmonic oscillations, and
find the period of the

motion.

rrrrrrrrrrrr

Answer

The diagram in Figure 1.9
shows the bady after it has
moved up a bit, so that it is
now a distance x below its
original equilibrium
position.,

original position

Figure 1.9 The floating body after it has moved
back up a bit from its maximum displacement.
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The forces on the body are its weight mg
downwards and the upthrust U upwards. The
upthrust is given by

U= pgVim = pgS(d+ x)

where § is the base area of the body. The net
force is upwards and equals

Foa = U—-mg=pgS(d+ x)—mg
At the equilibrium position x = 0, we have that

pgSd = mg

Substituting this value of mg in the net force, we
find

Fow = pgSi(d+ x)—pgsd = pg5x

The net force on the body is upwards, i.e.

opposite to the displacement x. We therefore
have that

ma = ...pgs}f
and so
__rss
m

i.e. the oscillations are simple harmonic, with
w' = & _The period of the oscillations is
therefore

T=2r fﬂ
Pgs

Q5

The graph in Figure 1.10 shows the variation

with displacement x of the acceleration a of a

body,

(a) Explain how it may be deduced that the body
executes SHM.

(b) Use the graph to determine the period of
oscillations.

(¢} Determine the maximum speed of the body
during the oscillations,

Answer

{a) The graph is a straight line through the origin
with negative slope, and so fits the defining
relation for SHM, a = —w’ x, where —w® is the
slope of the graph.

afm 52
i
1.5F

]

0.5}

15[

Figure 1.10 Graph showing the variation with time
of the acceleration of a body performing SHM.

{(b) From the graph we find that the slope is

ms~?
0 = —0.25 —
cm
. ms=*
=02
“ >10-m
w' =255
w=5.05"

P

The period is thus T =2 = 2 s~ 135,

{c) The amplitude of the motion is A= 6.0cm.
The maximum speed is

Vﬂn,u_ :'I'.U‘Az 5.0 x '&.ﬂ x ]ﬂ_z = U-.:iﬂm S_I

QO FTsFTe TS R SN RSN NV T TR TR S0
The graph in Figure 1.11 shows the displacement
of a particle from a fixed equilibrium position.

{a) Use the graph to determine: (i) the period of the
motion, (i) the maximum velocity of the particle
during an oscillation, and (iii) the maximum
acceleration experienced by the particle.

(b} On a copy of the diagram, mark: (i) a point
where the velocity is zero (label this with the
letter Z), (i) a point where the velocity is
positive and has the largest magnitude (label
this with the letter V), and (iii) a point where
the acceleration is positive and has the largest
magnitude (label this with the letter A).
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Figure 1.11 Graph showing the variation with
time of the displacement of a particle
performing SHM.

Answer

ta) (i) The period is read off the graph as
T =0.20s. Since T = 2 we have that

2n
= —=31.4 == I_I
f T 3 3s

(i) The maximum velocity is then

Vo = 0A=314%20x10%=0.63ms"

{iii) The maximum acceleration is found from
Ay = -0 A=31.4" x2.0x 107 =20 ms™

(b} (i) The velocity is zero at any point where the
displacement is at a maximum or a
minimum.

(ii) For example at t = 0.15s.
(iii} Forexample at t=0.10s0ort =0.30s.

()7 e T Iy NN NS AN S E SRS
A body of mass mis placed on a horizontal plate
that undergoes vertical SHM (Figure 1.12). The

I

Figure 1.12 A particle on a horizontal plate
executing SHM.

amplitude of the motion is A and the frequency

is f.

{a} Derive an expression for the reaction force on
the particle from the plate when the particle is
at its highest point.

{b} Using the expression in (a), deduce that the
particle will lose contact with the plate if the

frequency is higher than /2=,

Answer

{a) At the highest point x = A we have a = -’ A,
50
R —mg = ma =-mw'A

and substituting @ = 2af gives
R — mg = —m(2mf )’A
= —47f?mA
R = mg-47f'mA

{b) The particle will lose contact with the plate
when R <0, i.e. when

mg—4r’f*mA <0
mg < 4n'f*mA
47 *mA = ng

g
F= A

Energy in simple harmonic
motion

Consider again a mass at the end of a horizontal
spring. Let the extension of the spring be x ata
particular instant of time, and let the velocity of
the mass be v at that time. The elastic potential
energy stored in the spring is

EF =%k.¥2

and the kinetic energy of the mass is

Ek = %rm’z
These are shown separately in Figure 1.13, and
on the same axes in Figure 1.14.
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potential energy kinetic energy

X ' » X
0 0
Figure 1.13 Graphs showing the variation with
displacement of the potential energy and
kinetic energy of a mass on a spring.

ENergy
£
iotal energy
T 7
"ﬁ. ,'rpntcnll al
% & 3 / energy
\ /
! ; 4
5 :.' S |
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Ry s
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\\ /} ", kinetic
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T - * X
0

Figure 1.14 Graphs showing the variation with
displacement of the potential energy and
kinetic energy of a mass on a spring. The total
energy is a horizontal straight line,

The total energy of the system is then
E=Ep+Ex =3k + Jm?

In the absence of frictional and other resistance
forces, this total energy is conserved, and so

E & %kxz + %mvz = constant

If the mass is released from rest when the
extension is the amplitude of the motion A, then

1L4.2 1 2 1L a2

Solving for the velocity v we find

v=:|:‘/£q‘f12—x3

We need both signs since the mass passes any
one position twice, once going to the right
(positive velocity) and once going to the left
(negative velocity).

Recalling that for this motion o’ = £, we see
that

¥ =twy A2 —x2

The maximum velocity is achieved when x = 0,
i.e. as the mass moves past its equilibrium
position. The value of the maximum velocity is
then

Vmax = A

At the extremes of the motion, x = + A, and so
¥ =0 as we expect.

At x = + A the system has elastic potential
energy only, and at x = 0 it has kinetic energy
only. At intermediate points the system has
both forms of energy: elastic potential energy
and kinetic energy. During an oscillation, we
therefore have transformations from one form
of energy to another.

Example questions
Q8 e RS PR |

The graph in Figure 1.15 shows the variation with
the square of the displacement (x°) of the potential

&

200

b ¥ S )
RO S [ S U T W P R # 1 fem
0 1 2 3 4

Figure 1.15 Graph showing the variation with the
square of the displacement of the potential
energy of a particle in SHM,
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energy of a particle of mass 40 g that is executing

SHM. Using the graph, determine:

{a) the period of oscillation;

(b} the maximum speed of the particle during an
oscillation.

Answer

{a) The maximum potential energy is
E= 1 mwA®. From the graph the maximum
potential energy is 80.0 mJ (B0 x 107 ]} and
the amplitude is 2.00 cm (2.00 x 10~ m). Thus

,  2F

Wt = i
maA?

_ 2% 80x10?
~ 0.040 x (2.00 x 10-2)?

— 1“4 5_‘1
w=100s"

{b) The maximum speed is found from

Viax = @A =100 x 2.00 x 10 = 2.00 ms™'

QY v TN R AT OA LSS T
The graph in Figure 1.16 shows the variation with
displacement of the kinetic energy of a particle of
mass 0.40kg performing SHM. Use the graph to
determine:

(a) the total energy of the particle;

(b) the maximum speed of the particle;

fc} the amplitude of the motion;

kinetic energyfml

Figure 1.16 Graph showing the variation with
displacement of the kinetic energy of a particle.

(d) the potential energy when the displacement is
2.0 cm;
(e) the period of the motion.

Answer
{a) The total energy is equal to the maximum

kinetic energy, i.e. 80 m).
b} The maximum speed is found from

1
s = Enux

.

Vinax =

S [2%80x 102
i 0.40

Vinae = LB3I M s '

(c) The amplitude is 4.0 cm.

(d) When x = 2.0 cm, the kinetic energy is 60 m|
and so the potential energy is 20 mj.

{e) The maximum potential energy is 80 mJ and
equals 1kA*. Hence

LKA? = E
2E
A

B 2x80%x10"
T (4.0 % 10-2)2

k=

k=100 Nm™'

and then

100
T 0.40

@ = /250
=15815"

and so the period is T = = = 0.40s.

Q0 D s T T T ST YU TT SR RS2 £35S0 S o TS

A particle of mass 0.50 kg undergoes SHM with

angular frequency w = 9.0 s and amplitude

3.0 cm. For this particle, determine:

{a) the maximum velocity;

{b) the velacity and acceleration when the
particle has displacement 1.5 cm and moves
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towards the equilibrium position from its
initial position at x = 3.0 cm;

(c} the total energy of the motion.

Answer

{a) The maximum velocity is given by
Vinax = E,[JA

9.0 x 3.0 x 107

=0.27ms™'

Il

ib) At x = 1.5 cm, the velocity is
v=aw A - xF =£9.0,/(3.0° - 1.57) x 107
= +0.23 ms™'

We must choose the negative sign since the
particle is moving to the left, so
v=-0.23 ms”'. The acceleration is

a=-w'x
=-90¢x1.5x 10"
=-=1.2ms™*

{c) The total energy is

E=1imvi,
= 1(0.50)0.272
=18 m|
Damping

The SHM described above is unrealistic in that
we have completely ignored frictional and other
resistance forces. The effect of these forces on
an oscillating system is that the oscillations will
eventually stop and the energy of the system
will be dissipated mainly as thermal energy to
the environment and the system itself.

Oscillations taking place in the presence of
resistance forces are called damped
oscillations. The behaviour of the system
depends on the degree of damping. We may
distinguish three distinct cases: under-damping,
critical damping and over-damping.

Under-damping

Whenever the resistance forces are small, the
system will continue to oscillate but with a
frequency that is somewhat smaller than that
in the absence of damping. The amplitude
gradually decreases until it approaches zero
and the oscillations stop. The amplitude
decreases exponentially. Typical examples of
under-damped SHM are shown in Figure 1.17.
The case represented by (b) corresponds to
heavier damping than (a) and the oscillations
die out faster. Note that the period of
oscillation in the case of the heavier damping
(b} is larger than that in the case of lighter
damping (a).

light
~ damping

(a)

£

./\“.‘7\*-“
\/

heavy
damping

e

b
S
. L

=

0.5 ] n\_/

'-ﬂ.ﬁ
1.0

-1.5F

(b}

Figure 1.17 Graphs showing the variation with
time of the displacement of a particle in
damped SHM, The curve in (b) corresponds to
heavier damping than in (a), and has a slightly
longer period.
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Critical damping

In this case the amount of damping is large
enough that the system returns to its
equilibrium state as fast as possible without
performing oscillations. A typical case of
critical damping is shown in Figure 1.18.

critical
damping

L 1 L s 1 3 — |

0 2 4 6 g s

Figure 1.18 Critical damping. The displacement
goes to zero without oscillations.

Over-damping

In this case the degree of damping is so great that
the system returns to equilibrium without
oscillations (as in the case of critical damping) but
much slower than in the case of critical damping.
The system shown in Figure 1.18 if over-damped
would behave as the upper curve in Figure 1.19.

xiem

1.5E
E

1.0
critical

05F damping

i i 1 L 'l 1 1 1 M i |
0' 2 4 6 8
Figure 1.19 A system that is over-damped. The
displacement goes to zero slower than in the
case of critical damping,

* s

Forced oscillations and resonance

We will now examine qualitatively the effect of
an externally applied force F on a system that
is free to oscillate with frequency fy. The force

F will be assumed to vary periodically with
time with a frequency (the driving frequency)
fp, for example as F = Fgcos(2m fpt). The
question is how the oscillating system will
respond to the presence of the external driving
force. The oscillations that take place in this
case are called forced oscillations.

In general, some time after the external force is
applied, the system will switch to oscillations
with a frequency equal to the driving frequency
fp. However, the amplitude of the oscillations
will depend on the relation between fp and fj,
and the amount of damping. We might expect
that, because the system wants to oscillate at its
own natural frequency, when the external force
has the same frequency as the natural
frequency, large oscillations will take place. On
the other hand, at very low frequencies, fp = 0,
and so F= Fgcos(2rfpl) == Fy, Le. it is constant.,
A constant force applied to a spring, for
example, will extend the spring by a constant
amount.

A detailed analysis produces the graph in
Figure 1.20 showing how the amplitude of
oscillation of a system with natural frequency
fo varies as it is subjected to a periodic force of
frequency fp. The degree of damping increases
as we move from the top curve down.

]

Figure 1.20 Graph showing the variation with
driving frequency of the amplitude of forced
SHM when the system is driven by an external
periodic force.
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The general features of the graph in Figure 1.20
are as follows:

» For a small degree of damping, the peak of the
curve occurs at the natural frequency of the
system, fp.

+ The lower the degree of damping, the higher
and narrower the curve,

+ As the amount of damping increases, the peak
shifts to lower frequencies.

» At very low frequencies, the amplitude is
essentially constant.

If fis very different from f, the amplitude of
oscillation will be small. On the other hand, if
fp is approximately the same as f;, and the
degree of damping is small, the resulting driven
oscillations will have large amplitude. The
largest amplitude is obtained when fp is equal
to fy, in which case we say that the system is in
resonance.

b'}‘hem inwt_:@ggthefréqumufma
nmnﬂﬁﬂ@mérﬁfmmﬁmﬂeﬂ PI3res
nmnmm.'lhismulmin oscillaﬁons mth
Ii;fﬁeamphtﬂdﬂ.

Resonance can be disastrous: we do not want
an aeroplane wing to resonate; nor is it good
for a building to be set into resonance by an
earthquake. Resonance can be irritating: if the
car in which you drive is set into resonance by
bumps on the road or a poorly tuned engine.
But resonance can also be a good thing:
resonance is used by a microwave oven to
warm food; and your radio uses resonance to
tune into one specific station and not another.
Another useful example of electrical
resonance is the quartz oscillator, a crystal
made out of quartz that can be made to
vibrate at a specific frequency. The resonant
frequency of the quartz oscillator depends on
how it is cut from the original crystal. These
crystals are used as the timing device in
electronic watches and many-other devices in

electronics. They are cheap and keep their
characteristics with time. The operation of the
quartz oscillator uses a phenomenon called
piezoelectricity in which an electrical signal
applied to the crystal forces the crystal to
vibrate. In turn, the mechanical vibration is
fed back as another electrical signal at the
crystal’s resonant frequency.

1 State what is meant by oscillation and simple
harmonic motion.

2 State two ways in which an SHM oscillation is
different from a general oscillation.

3 A ball goes back and forth along a horizontal
floor bouncing off two vertical walls. Is the
motion an example of an oscillation? If yes, is
the oscillation simple harmonic?

4 A ball bounces vertically off the floor. Is the
motion of the ball an example of an oscillation?
If yes, is the oscillation simple harmonic?

5 Explain how you would use a spring of known
spring constant to measure the mass of a body
when in a spacecraft in outer space.

6 Explain why the oscillations of a pendulum
are, in general, not simple harmonic. What
condition must be satisfied for the oscillations
to become approximately simple harmonic?

7 Show explicitly that, if x = A cos(wt + ¢), the
period of the motion is given by T =2
independently of A and ¢.

8 The displacement of a particle executing SHM
is given by y = 5.0 cos (2t), where yis in
millimetres and t is in seconds, Calculate:

(a) the initial displacement of the particle;
(b) the displacement at t = 1.2s;
{c) the time at which the displacement first
becomes -2.0 mm;
(d) the displacement when the velocity of the
particle is 6.0mm s,
9 (a) Write down an equation for the

displacement of a particle undergoing
SHM with an amplitude equal to 8.0 cm
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and a frequency of 14 Hz, assuming that
at t = 0 the displacement is 8.0 ¢m and
the particle is at rest.

(b} Find the displacement, velocity and
acceleration of this particle at a time of
0.025 s,

10 A point on a guitar string oscillates in SHM
with an amplitude of 5.0mm and a frequency
of 460 Hz. Determine the maximum velocity
and acceleration of this point.

11 A guitar string, whose two ends are fixed
so that they cannot move, oscillates as
shown in Figure 1.21.

Figure 1.21 For question 11.

The vertical displacement of a point on
the string a distance x from the left end is
given by y = 6.0cos(1040xt) sin (7 x),
where y is in millimetres, x is in metres
and t is in seconds. Use this expression
1o

(a) deduce that all points on the string
execute SHM with a common
frequency and common phase, and
determine the common frequency;

(b) deduce that different points on the
string have different amplitudes;

(c) determine the maximum amplitude of
oscillation;

(d) calculate the length L of the string;

{e) calculate the amplitude of oscillation
of the point on the string where
X = % ey

12 A body performs SHM along a haorizontal
straight line between the extremes shown by
the dashed lines in Figure 1.22.

equilibrium
position

A B
Figure 1.22 For question 12,

The arrows represent the direction of motion
of the body. The body is shown in four
positions, A, B, C and D. Copy the diagram
and, in each position, draw arrows to
represent the direction and relative magnitude
of (a) the acceleration of the body, and (b) the
net force on the body.

13 The piston (of mass 0.25 kg) of a car engine

has a stroke (i.e. distance between

extreme positions) of 9.0 cm and operates at

4500 rev min~', as shown in Figure 1.23,

{a) Calculate the acceleration of the piston at
maximum displacement.

(b) Calculate the velocity as the piston moves
past its equilibrium point.

{c) What is the net force exerted on the piston
at maximum displacement?

Figure 1.23 For question 13,

14 The graph in Figure 1.24 shows the variation
with time t of the velocity v of a particle
executing SHM.
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Figure 1.24 For question 14.

(a) Using the graph, estimate the area
between the curve and the time axis from
0.10 5 10 0.30 s.

(b) State what this area represents.

{c) Hence write down an equation giving the
displacement of the particle as a function
of time.

15 The graph in Figure 1.25 shows the variation
with time t of the displacement x of a particle
executing SHM.

xfem
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Figure 1.25 For question 15.

Draw a graph to show the variation with
displacement x of the acceleration a of the
particle (put numbers on the axes).

16 The graph in Figure 1.26 shows the variation
with displacement x of the acceleration a of a
body of mass 0.150 kg.

{a) Use the graph to explain why the motion
of the body is SHM, Determine the
following:

{b) the period of the mation;

{c) the maximum velocity of the body during
an oscillation;

{d) the maximum net force exerted on the
baody;

{e) the total energy of the body.

afm 572
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Figure 1.26 For question 16.

17 A body of mass 0.120 kg is placed on a
horizontal plate. The plate oscillates
vertically in SHM making five oscillations
per second.

(a) Determine the largest possible amplitude
of oscillations such that the body never
loses contact with the plate.

(b) Calculate the normal reaction force on the
body at the lowest point of the oscillations
when the amplitude has the value found
in (a).

18 A passenger on a cruise ship in rough seas
stands on a set of ‘weighing scales’. The
reading R of the scales (in kilograms) as a
function of time is shown in Figure 1.27.
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Figure 1.27 For question 18.

Use the graph to determine:
{a) the mass of the passenger;
(b) the amplitude of the waves in the sea.

HL only

19 This is a very unrealistic but interesting
‘thought experiment’ involving SHM. Imagine
boring a straight tunnel from one place (A) on
the surface of the earth to another place (B)
diametrically opposite, and then releasing a
ball of mass m at point A (Figure 1.28). To
answer the following questions, you need to
know that gravitation implies that, when the
ball is at the position shown in Figure 1.28, it
experiences a force of gravitation from the
mass inside the dotted circle only. Further,
this mass inside the dotted circle may be
considered to be concentrated at the centre
of the earth. Assume that the density of the
earth is uniform.

Figure 1.28 For question 19.

{a} Denoting the mass of the earth by M
and its radius by R, derive an
expression for the mass inside the
dotted circle {of radius x).

(b) Derive an expression for the
gravitational force on the ball when at
the position shown in Figure 1.28, a
distance x from the centre,

{c) Hence deduce that the motion of the
ball is simple harmonic.

(d) Determine the period of the motion.

(e} Evaluate this period using
M= 6.0 x 10**kg,

R = 6.4 x 10°m and
G =667 x 100" Nkg?m?.

(f) Compare the period of this motion
with the period of rotation of a satellite
around the earth in a circular orbit of
radius R.

20 A particle of mass m is attached to the middle
of a horizontal string of constant tension T.
The length of the string is L. The tension in the
string is so large that the string is essentially
horizontal at the equilibrium position. The
particle is displaced vertically by a small
distance A and is then released (Figure 1.29).

Figure 1.29 For question 20.

{a) Deduce that the net force on the particle
at the position shown is 2T sinf.

(b} Hence deduce that the particle’s
acceleration is given by a = —iLx, where
x is the vertical distance of the particle
from the horizontal line.

{c) Determine the period of oscillations of this

particle.

21 A body is suspended vertically at the end of a
spring that is attached to the ceiling of an
elevator (Figure 1.30). The elevator moves
with constant acceleration. Discuss
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that its displacement from equilibrium is given

by x = 0.360 cos(6.801), where x is in melres

and 1 is in seconds. Determine:

{a) the amplitude, frequency and period of the
oscillations;

{b) the total energy of the body;

| (c) the kinetic energy and the elastic potential

B 24 A body of mass 1.80 kg executes SHM such

J | energy of the body when the displacement
J is 0.125 m.
25 A body of mass 2.0 kg is connected to two
Figure 1.30 For question 21. springs, each of spring constant k=120 Nm™'

(Figure 1.32),
{a) When the springs are connected as in
acceleration on the period of oscillations of Figure 1.32(a), calculate the period of the

the mass when the acceleration is (a) upwards oscillations of this s when it is‘ ‘
and () downwards: displaced from its equilibrium position

and then released.

(b) When the springs are connected instead as

in Figure 1.32(b}, would the period change?

qualitatively the effect, if an-,.r,. of the

22 A particle undergoes SHM with angular
frequency w. The initial displacement is x;
and the initial velocity is v,. Deduce that
an expression for the amplitude of this
motion is

sz 3
A= X"-]-;E.

23 A block is attached 1o a spring and :
performs SHM along a horizontal straight (b)

line. A piece of putty is dropped vertically Figure 1.32 For question 25.
s0 that it sticks to the block when it lands
on it (Figure 1.31). 26 A-woman bungee-jumper of mass 60 kg is
ey attached to an elastic rope of natural length
l 15 m. The rope behaves like a spring of spring
constant k = 220 Nm™', The other end of the

spring is attached to a high bridge. The

i woman jumps from the bridge.

Figure 1.31 For question 23. {a) Determine how far below the bridge she
falls, before she instantaneously comes to
rest.

{b} Calculate her acceleration at the position
you found in (a).

{c) Explain why she will perform SHM, and
find the period of oscillations.

{d) The woman will eventually come to rest at
a specific distance below the bridge.
Calculate this distance.

Discuss qualitatively the effects of this, if

any, on the amplitude and the period of

oscillation in the following two separate

cases in which the putty lands on the block:

{a) when the block moves past its
equilibrium position;

(b} when the block is momentarily at rest
at maximum displacement.
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(e} Explain whether her oscillations are under-

(f)

damped, critically damped or over-
damped.

The mechanical energy of the woman after
she comes to rest is less than the woman'’s
total mechanical energy just before she
jumped. Explain what happened to the
lost” mechanical energy.

27 State what is meant by under-damping, critical
damping and over-damping in the context of
SHM oscillations.

28 State two examples of oscillating systems
where damping is desirable and two examples
where it is undesirable.

29 The graph in Figure 1.33 shows the variation
with time t of the displacement x of a particle
undergoing SHM that is under-damped.

(a)

ib)

(cl

By making measurements on the diagram,
determine whether the ratio of successive
amplitudes stays constant,

The amount of energy stored in the
oscillation is proportional to the square of
the amplitude. Determine, for these
oscillations, the amount of energy lost in
one oscillation as a percentage of the
energy stored in the previous oscillation,
On the same axes, draw a graph to show
the changes, if any, to the variation of
displacement if the amount of damping
were to increase (but still keep the
oscillations under-damped).

30 The graph in Figure 1.34 shows the variation
with time t of the displacement x of a particle

performing critically damped SHM. On the

Figure 1.33 For question 29, -
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3

32

33

0
Figure 1.34 For question 30.

same axes, draw sketch graphs to show the
variation of the displacement when the same
system is (a) under-damped and (b) over-
damped. (Mote: no numbers are required on
the axes.)

The shock absorbers of a car protect the
passengers by absorbing the impact felt by the
car when going over bumps on the road. Should
the shock absorbers be under-damped, critically
damped or over-damped? Discuss your answer.

State one advantage and one disadvantage of
over-damped car shock absorbers.

A particle performs SHM. Draw sketch graphs
on the same axes (no numbers are required)
to show the variation with time t of the
amplitude A of the motion for (a) no damping,
(b) light damping and (c) heavy damping.

HL only

34 A particle of mass m is attached 1o a

horizontal spring of spring constant k and

executes SHM of amplitude A.

(a) State the angular frequency of
oscillations of the particle.

{b) Deduce that the velocity and
displacement of the particle satisfy the

relation
vl x* ]
wlAl ' AT

(c) Sketch a graph to show the variation
with displacement x of the velocity v
of the particle. Your graph must
represent one full oscillation.

(d) The area of the ellipse #L, + :—z =11is
given by wah. Determine the area of
the graph you have drawn in (c).

(e) The mass is now subject to light
damping. Suggest how the graph in (c)
changes.

35 Distinguish between free oscillations and
forced oscillations,

36 State what you understand by the term
‘resonance’. Give one example of resonance.

37 Itis said that soldiers marching over a bridge
will break their step. What might be a reason
for this?

38 A body of mass mis attached to a spring of

spring constant k and unstretched length L.

The other end of the spring is attached to a

frictionless horizontal table. The spring is free to

rotate as shown in Figure 1.35. The body moves

along a circle on the table with frequency £

{a) State the natural frequency of the
spring-mass system.

{b) Calculate the extension of the spring.

(c) Comment on your answer to (b) when the
frequency of rotation becomes equal to
the natural frequency you stated in {a).

{d) How is the difficulty discovered in (c)
resolved?

Figure 1.35 For question 38,
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Travelling-wave characteristics

This chapter introduces a new and special kind of motion; wave motion. There are two
large classes of waves: mechanical and electromagnetic waves. Waves can be further

classified into transverse and longitudinal waves.

Objectives

By the end of this chapter you should be able to:

= state what is meant by wave motion;

= distinguish between longitudinal and transverse waves,
» define amplitude, wavelength, period and frequency and state the

relationship between them, [ = +;

= state what is meant by crest and frough and identify these on a graph;
« find amplitude and period from a displacement-time graph;

* find amplitude and wavelength from a displacement—position graph;

+ understand the meaning of the terms wavefront and ray;

+ usey =Aif.

What is a wave?

Waves are a very special kind of motion that
differs significantly from the motion we have
studied in earlier chapters. To understand the
difference, and to appreciate this new kind of
motion, let us look at what we have learned in a
somewhat different way. If a stone is thrown at a
window and the window breaks, this is because
the stone transferred its kinetic energy from the
point at which it was thrown onto the window.
The stone exerted a force on the window (transfer
of momentum) and broke it. A wave is also a way
of transferring energy and momentum from one
place to another but without the actual largescale
mation of a material body. For example, light (a
kind of wave) from the sun arrives on earth
having travelled a large distance in a vacuum,
and upon arrival warms up the earth. A soprano
singing can break a crystal glass because energy
and momentum have been transferred through
air by a sound wave. '

Light is an example of a wave that does not
need a medium in which to travel. It can travel
in a vacuum as well as in solids (e.g. glass) or
liquids (e.g. water). Light is part of a large
family of waves called electromagnetic waves.
Sound, along with water waves, string waves,
etc., belongs to a family called mechanical waves.
These do require a medium for their
propagation. Sound, for example, cannot travel
in a vacuum. Sound can travel in solids and
liquids as well as, of course, in gases. Similarly,
water waves travel, not surprisingly, in water.

How do we describe a wave? A wave is always
associated with a disturbance of some kind. A rope
held tight is horizontal when no wave is
travelling on it. By moving one end up and

down, we create a disturbance and individual
points on the rope are now higher or lower than
their original undisturbed positions. In the case
of sound, the density of air becomes successively
higher or lower when a sound wave travels
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through the air compared with when there is no
sound wave. (The case of light is a bit more
complicated and we will not discuss it here.)

mcdmm{wblchcanbeavacuuminthe
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Note that in all the examples we have talked
about, there is no large-scale motion of the
medium. Points on a rope oscillate up and
down, and molecules in air move back and
forth along the direction of a sound wave that
is travelling through the air. This is local, small-
scale motion; the material of the medium does
not itself travel large distances.

Transverse and longitudinal
waves

In addition to the division into mechanical and
electromagnetic, waves can be further divided
into two classes. The first class is called
transverse and consists of those waves in which
the disturbance is at right angles to the direction
of propagation of the wave. A typical example is
a wave on a string: the direction of propagation
is along the string but the disturbance is at
right angles to the string (see Figure 2.1).
Electromagnetic waves are also transverse.

The second class is called longitudinal and
consists of those waves in which the disturbance
is along the direction of propagation of the wave.
A typical example is sound: if we imagine that a
sound wave is moving from left to right in a
thin tube, the disturbance is the motion of air
molecules back and forth along the tube. In
Figure 2.2 the dots represent molecules of air.

In the top picture the molecules are equally
spaced, representing the gas in its equilibrium
state. As the wave passes through the gas, the

Figure 2.1 A transverse wave on a string travelling
to the right. At the early time of the top picture,
the parts of the string marked are at their
maximum displacement above and below the
equilibrium position of the siring. Some time
later the left part has moved up and the right
part down - their motion is at right angles to
the direction of motion of the wave.
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Figure 22 In a longitudinal wave, molecules
execute simple harmonic motion along the
direction of propagation of the wave.

molecules move to the right or left. As they do
so they create regions of higher than normal
density (compressions) and regions of lower
than normal density (rarefactions). For
convenience we have marked one molecule grey
to indicate that molecules execute simple
harmonic oscillations about their equilibrium
positions (dotted line for the grey molecule).
Figure 2.3 shows the compressions and
rarefactions that occur in the medium in which
the wave moves.

4 compressions 1 4 rarefactions ¢

Figure 2.3 The motion of the molecules causes
compressions and rarefactions in the medium
in which the wave moves,
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Wave pulses

To help us to understand waves we will start
with a simple case, that of a wave pulse. If you
tie one end of a rope to a wall and move the
other end sharply up and then back down to its
starting position, you will produce a wave pulse
that will travel along the rope. It looks like
Figure 2.4 (this is idealized to a triangular
pulse — the real pulse would be curved):

. *
s . direction of motion
—/‘; direction
of
_/\ disturbance

Figure 2.4 The pulse is moving to the right. The
disturbance is normal to the direction of
motion,

If your hand is first moved down below the rope
then back up to the starting point, continues up
above the rope and finally back down to the

starting point, the pulse will look like Figure 2.5.

this part is created last

direction of motion
e *

= this pan 15 created first

the pulse some time later

Figure 2.5 A full pulse travelling to the right.

It takes a certain time for this disturbance to
move along the rope (i.e. for this wave pulse to
reach another point in the rope). The wave
pulse travels with a certain speed down the
rope. In the case of the wave pulse on the rope,
the speed of the pulse is determined not by the
way in which the pulse was created (big or
small pulse, wide or narrow) nor by how fast or
slow your hand moved the rope; rather, it is

determined by the tension T in the rope and
the mass per unit length g = T of the rope.
Although not required for examination

purposes, it is good to know the following:

» The speed of the pulse on the stringis |
given by
ﬁ T
V.= f—

: o _ .
The speed of the wave is determined by
the properties of the medium and not by
how the wave is created.

The greater the tension in the medium, the
greater the speed of the wave produced. You can
convince yourself that the speed is greater
when the tension is greater by creating pulses
on a slinky, which can be kept at various
tensions by having it stretched by different
amounts. You will then also see that v is
independent of the shape of the pulse you
produce and of how fast you produced it.

The statement that the speed of the pulse is
independent of the amplitude is true provided
the amplitude is not too big. If the amplitude is
big, then the string is more stretched and thus
the tension is greater, implying a greater pulse
speed. Not too big an amplitude means not big
compared with the length of the string.

Travelling waves

In the previous section we saw how a single
pulse can be produced on a stretched rope. We
can create a travelling wave if we now produce
one pulse after another. If, in addition, the
agent forcing the rope up and down executes
simple harmonic motion, then the wave will
look like a sine wave (also called a harmonic
wave) — see Figure 2.6 (top).

If the sequence of pulses produced are square
pulses, then the wave generated is a travelling
square wave - see Figure 2.6 (bottom).




4.2 Travelling-wave characteristics 219

Figure 2.6 A periodic sine wave and a periodic
square wave.,

Harmonic waves are very important because
any periodic disturbance can be expressed as a
sum (superposition) of a number of harmonic
waves. This is a general theorem in
mathematics known as Fourier's theorem.

Harmonic waves

A simple way of producing harmonic waves is to
attach one end of a rope to a tuning fork, as
shown in Figure 2.7, If the tuning fork is then
made to oscillate, one full wave will be
produced on the rope after a time equal to the
period of the tuning fork.

no wave present t=0s%

o S—

A
one full wave

Figure 2.7 A full wave is produced in a time equal
to one period.

h‘i’helehg'ﬂi of a full wave is :ﬁlleﬂ:tmf
~ wavelength, 4, and timtlmeﬂaed,ed o
- produce one full wave (or the, ﬂmtmn of

aﬁﬂlwaﬁllsﬂmpeﬁnq i’

After a second full period, a second full wave
will be produced (see Figure 2.8). The original
full wave has moved forward a distance equal to
the wavelength.

wave produced
first
=2T

two full waves

Figure 2.8 Two full waves are produced in
sequence by the oscillating tuning fork.

¥ It thus follows that, since the wave moves
forward a distance equal to a wavelength-
in a time equal to one period, the speed
of the wave is given by
X

=

Since one full wave is produced in a time of T s,
it follows that the number of full waves
produced in 1sis 1/7. This is the frequency.

» The number of full waves produced in 1
is called the fra:tumcy of the wave,
I = +.The unit of frequency is the
inverse second, which is given the special
name hertz (Hz). In terms of frequency
the wave speed is thus

_ v=axf

Waves can be represented graphically. This is a
bit complicated because a wave depends on
distance (where along the wave are we
looking?) as well as time (at what time are we
looking at the wave?). First we have to decide
how we will quantify the ‘disturbance’ of the
wave. For a wave on a string the obvious
choice is to measure the height of a point on
the string above or below the undisturbed
position of the string. The disturbance here is
thus the displacement of a point on the string
and is measured in units of length. We
normally denote this displacement by y,
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which will be a function of distance (x) and
time (f).

In the case of sound, the disturbance may be
associated with the density of the medium
through which sound propagates. We may then
define the difference y, = p — pp as the
displacement of density (p) relative to the
equilibrium density of the medium when no
sound is present in it (pg). The displacement
here has units of density and is also a function
of position and time. In the case of sound, we
could equally well define displacement as the
difference y, = p — po, which is the difference
between the pressure of the medium when
sound is present and the equilibrium pressure
when no sound is present. Displacement would
then have units of pressure.

This discussion can be generalized to all waves.
All waves have a displacement that is the
difference of some quantity and the
equilibrium value of that quantity when no
wave is present. The displacement of any wave
is a function of position and time. We may
therefore represent waves in graphs of
displacement versus position (distance) and
graphs of displacement versus time.

Let us consider a wave propagating along a
string from left to right. The left end of the
string is represented by x = 0 m and any other
point on the string is specified by giving its
corresponding x coordinate (see Figure 2.9).

string

1 1 1 1 L 1 [
I T ] T T T T
0 1 2 3 4 5 6 T B xi'm

Figure 2.9,

As the wave propagates along the string, we
would like to know the displacement at each
point on the string at a specific point in time, This
is given by a graph of displacement versus
position - Figure 2.10.

The first important piece of information from
such a graph is the wavelength.
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Figure 2.10 A graph of displacement versus
position tells us the disturbance of any point on
the string at a specific moment in time.

» Graphs showing the variationof
_dispiacamen‘twiﬂl-pﬂsiﬁhﬁmﬁtﬂsm fist
~ determine the wavelength of the wave
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This graph also tells us that at the point on the
string that is 0.5 m from the string’s left end
the displacement is zero at some point in time.
At that same point in time at a point 1.125 m
from the left end the displacement is 0.6 cm,
etc. Thus, a graph of displacement versus
position is like a photograph of the string taken
at a particular time. If we take a second
photograph of the string some time later, the
string will look different because the wave has
moved in the meantime. It might look like
Figure 2.11.

wem

WEEEE
=R
8 [ .'\';_ b
R B

\

Wi HE:

—0.6 4

Figure 2.11 A graph of the disturbance of any
point on the string at a later moment in time.
Note that every point has a different
disturbance from that shown in Figure 2.10.
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We see that the displacement at x = 0 m that
was zero in the first photograph is not zero
now. It is about 0.5 cm. The displacement at a
particular point on the string changes as time
goes on and thus we can graph it as a function
of time,

Figure 2.12 shows how the displacement of a
particular point on the string (the pointx = 0m
to be precise) varies as time goes on. This is a
graph that shows the variation of displacement
with time,
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Figure 2.12 A graph of displacement versus time
tells us the disturbance of a specific point on

the string as time goes on.

From these graphs we can deduce the following
information about the wave. From any graph we
see that the maximum displacement of the
wave is 0.6 cm. The wavelength of the wave can
be determined by looking at a displacement-
position graph. From Figure 2.10 it thus follows
that A = 0.5 m. To find the period we must look
at a displacement—time graph. From Figure 2.12 we
find I = 4.0 ms. Hence, the frequency is 250 Hz
and the speed of the wave is 125 m s, (Note
that by comparing Figures 2.10 and 2.11 we see
that the wave moved forward a-distance of

0.1 m. Since the speed of the wave is 125 m s,
it follows that the photograph of Figure 2.11
was taken 0.1/125 s = 0.8 ms later than that of
Figure 2.10.)

Consider now the wave of Figure 2.13. We
deduce that the disturbance is a pressure
measured in kPa. However, in this graph the
experimenter has not plotted the difference
of pressure and the equilibrium value of
the pressure. We may then deduce that the
pressure in the medium when no wave
travels through (the equilibrium pressure) is
4.0 kPa. We may also deduce that the
maximum displacement (the amplitude) 1s
0.5 kPa. The wavelength is 4.0 m and in the
absence of a displacement-time graph we can
say nothing about the period or frequency,
and hence speed, of this wave. On the other
hand, if we are given the additional
information that this is a sound wave of
speed 340 m s ', then we deduce that the
frequency is 85 Hz and so the period is

11.8 ms.

—+ /m
0 2 4 6 8

Figure 2.13 A wave in which the disturbance is
about a non-zero value.

The wave of Figure 2.14 is an electromagnetic
wave in which the displacement is the electric
field measured in volts per metre. The amplitude
is 0.2V m ' and the period is 3 x 10~" 5. The
frequency is thus 3.33 x 10" Hz. If we are told
further that this wave moves in a vacuum

then we know that the speed of such a wave
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Figure 2.14 An electromagnetic wave as a function
of time,

is3x 10 ms™!
9.0 x 1077 m.

and so the wavelength is

l-'.['hewa?elength [whlchwedeﬁned to be
the length of one full wave) is also equal to
thedistancehememsmmmﬁtsor
.mmmmmughsmadlsplamnmt-
position graph.

The period {whxhw defined to be the
duration of one full wave) is also equal to
the time between successive crests or
successive tmughs ina dtspiacemenb*
timegraph.

The wavelength and frequency are two of the
characteristics of a wave. A third characteristic
is amplitude.

The an;p]iﬁxde nfawm i&dtﬁne&thﬁe
mayﬁmnthepomﬂanwhennnmﬁ
present.

The amplitude of a wave is a measure of the
energy the wave carries. In general, the energy
carried is proportional to the square of the
amplitude, which means that (all other things
being equal) a water wave of amplitude 2.0 m
carries four times as much energy as a water
wave of amplitude 1.0 m.

In the first diagram of Figure 2.15 the
amplitude of the wave is 2.0 cm. In the second
it is 2.0 cm as well, The dotted line at 4.0 cm
shows the equilibrium position, when no wave
is present. The 4.0 cm might represent the
height of a bit of water in a container. When
no waves are present on the surface of the
water, all points on the surface are 4.0 cm
from the bottom of the container. When a
small water wave is established in the
container, the distance of various points on
the surface varies as shown in the diagram. As
the amplitude is the maximum displacement
away from the equilibrium position, it is thus
2.0 cm.
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Figure 2.15 Diagrams showing the amplitude,
crests and troughs of a travelling wave. In the
second case, the equilibrium value is not at
zero,

» Points on the wave with maximum
Mplmment are called crests while those

- at minimum dxsp‘iamment are mlled

" troughs,
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The diagrams in Figure 2.16 show the
variation of displacement with position at
various times. We see the meaning of the term
travelling wave. The crests of the wave move
forward,

=100 ms

mé/\ /\ /\5

r=25ms

-1
Figure 2.16 A sequence of pictures taken every
0.5 ms showing a travelling harmonic wave.
Note how the peaks move forward. We have
marked a point on the string to show that in

a transverse wave points on the string move
perpendicularly to the direction of the wave.
After a full period (T = 3.0 ms) a picture of the
rope looks like it did at the beginning

(t = 0 ms), which is what allowed us to
determine the period of the wave in the first
place. The speed of the wave is 33.3 m 5
(found by dividing the wavelength by the
period) and the frequency is 333 Hz.

Example questions

)1 T T S S S S |
A radio station emits at a frequency of 90.8 MHz.
What is the wavelength of the waves emitted?

Answer

The waves emitted are electromagnetic waves and
move at the speed of light (3 % 10% m s7').
Therefore, from v = A f we find A = 3.3 m.

Q2 e e T RV A S AR Y VS VS S SR LR T
A sound wave of frequency 450 Hz is emitted
from A and travels towards B, a distance of 150 m
away. Take the speed of sound to be 341 ms™'.
How many wavelengths fit in the distance from A
to B?

Answer

The wavelength is

341
=—m
450
= 0.758 m

Thus the number of wavelengths that fit in the
distance 150 m is

150

~ 0.758
= 198 wavelengths (approximately)

()3 T T T S LT T eS P S FER
The noise of thunder is heard 3 s after the flash of
lightning. How far away is the place where
lightning struck? (Take the speed of sound to be
340ms ')

Answer

Light travels so fast that we can assume that
lightning struck exactly when we see the flash of
light. If thunder is heard 3 s later, it means that it
ook 3 s for sound to cover the unknown distance,
d. Thus

d= vt
=340 x Im
= 1020 m
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(O II200eeer s FETTIITII SISO STTTITI L B2 6009 5
Water wave crests in a lake are 5.0 m apart and
pass by an anchored boat every 2.0 s. What is the
speed of the water waves?

Answer
5.0 1n
v=—ms
2.0
=25ms"

()5 TG P TP s R P STy Y ]
A toothed wheel has 300 teeth on its
circumference. It rotates at 30 rpm (revolutions per
minute). A piece of cardboard is placed such that
it is hit by the teeth of the wheel as the wheel
rotates. What is the frequency of the sound
produced?

Answer

In 1 min the cardboard will be hit by a tooth
30 X 300 = 9000 times, which is 150 times in
1 5. The frequency of the sound is thus 150 Hz.

Q6 e T SRS TSI 11126 ST 0naEs)
A railing consists of thin vertical rods a distance of
2 cm apart. A boy runs past the railing at a speed
of 3 m s~' dragging a stick against the rods. What
is the frequency of the sound produced?

Answer

In 1 s the boy moves a distance of 3 m, or past
300/2 = 150 rods. The frequency of the sound is
thus 150 Hz.

Wavefronts

Imagine a wave propagating in some direction,
for example, water waves approaching the shore
(see Figure 2.17).

The direction of the waves is horizontal, so if
we imagine vertical planes going through the
crests, the planes will be normal to the

direction of the wave. These planes are called

Figure 2,17 A twodimensional wave,

wavefronts; and lines at right angles to them
are called rays.

wavefrom

| NS
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wavelength
Figure 2.18 Surfaces through crests and normal to
the direction of energy propagation of the wave
are called wavefronts or wavecrests. Rays are
mathematical lines perpendicular to the
wavefronts in the direction of propagation of
the wave,

(A wavefront is properly defined through the
concept of phase. All points on a wavefront have
the same phase. This will be discussed in
Option G3.)

On the other hand, if we consider the surfaces
going through crests of water waves caused by a
stone dropped in the water, we would find that
in this case the wavefronts are cylindrical
surfaces (see Figure 2.19).
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v

Figure 2.19 Example of cylindrical wavefronts. The
cylinders go through the crests dnd are normal to
the plane of the paper. The rays are radial lines.

Example question

Q7 T T s pr s IS TRl I TR R T S
A stone dropped in still water creates circular
ripples that move away from the point of impact.
The initial height of the ripple is about 2,4 cm
and the wavelength is 0.5 m. Draw a sketch of
the displacement of the ripples as a function of
the distance from the point of impact.

Answer

The energy carried by the wave is distributed
along the {(circular) wavefronts. As the wave
moves away from the point of impact, the length
of the wavefront increases and so the energy per
unit wavefront length decreases. Thus, the
amplitude has to decrease as well. So we get the
graph shown in Figure 2.20.
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Figure 2.20.

The wavefronts of light waves leaving a point
source (a very small lamp) would be spherical.
We can thus speak of plane, cylindrical and
spherical waves, according to the shape of the
wavefronts. Note that cylindrical and spherical
waves tend to become plane waves very far away
from their source.

Questions

1 In football stadiums fans often create a ‘wave’
by standing up and sitting down again. What
determines the speed of the ‘wave'?

2 A number of dominoes are stood next to each
other along a straight line. A small push is
given to the first domino and one by one the
dominoes fall over. How is this an example of
wave motion? How can the speed of the wave
pulse be increased? Design an experiment in
which this problem can be investigated.

3 What is the wavelength that corresponds to a
sound frequency of:
(a) 256 Hz;
{b) 25 kHz?
Take the speed of sound to be 330 ms ™.

4 By making suitably labelled diagrams explain
the terms:

(a) wavelength;

(b) period;

(c) amplitude;

(d) crest;

(e} trough.

5 The tension in a steel wire of length 0.800 m
and mass 150.0 g is 120.0 N. What is the
speed of transverse waves on this string?
(Use v= /L)

6 A string has a length of 20.0 m and is kept at a
tension of 50.0 M. Its mass is 400.0 g. A
transverse wave of frequency 15.0 Hz travels
on this string.

{a) What is its wavelength?

{b) If the same wave is created on the same
kind of string (same mass per unit length
and same tension) but of double the
length, what will the wavelength of the

wave be? (Use v = J}}
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7 Astone is dropped on a still pond at t = 0.

The wave reaches a leaf floating on the pond

a distance of 3.00 m away. The leaf then

begins to oscillate according to the graph

shown in Figure 2.21.

{a) Find the speed of the water waves.

(b} Find the period and frequency of the
wave.

(¢} Find the wavelength and amplitude of the
wave.
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Figure 2.21 For question 7.

8 A sound wave of frequency 500 Hz travels
from air into water. The speed of sound in air
is 330 m s™" and in water 1490 m s~', What
is the wavelength of the wave in:

(a) air;
(b) water?

9 The speed of ocean waves approaching the
shore is given by the formula v = \/gh, where
h is the depth of the water. It is assumed here
that the wavelength of the waves is much
larger than the depth (otherwise a different
expression gives the wave speed). What is the
speed of water waves near the shore where
the depth is 1.0 m? Assuming that the depth of
the water decreases uniformly, make a graph
of the water wave speed as a function of
depth from a depth of 1.0 m to a depth of
0.30 m.

10 (a) Explain, in the context of wave motion,
what you understand by the term
displacement.

(b} Using your answer in (a), explain the
difference between longitudinal and
lransverse waves.

{c) A rock thrown onto the still surface of a
pond creates circular ripples moving away
from the point of impact. Why is more
than one ripple created?

() Why does the amplitude decrease as the
ripple moves away from the centre?

11 A ship sends a sonar pulse of frequency
30 kHz and duration 1.0 ms towards a
submarine and receives a reflection of the
pulse 3.2 s later. The speed of sound in water
is 1500 m s~ ', Find the distance of the
submarine from the ship, the wavelength of
the pulse and the number of full waves
emitted in the pulse.

12 Figure 2.22 shows three points on a string on
which a transverse wave propagates to the
right. Indicate how these three points will
move in the next instant of time.

Figure 2.22 For question 12,

13 How would your answers change if the wave
in question 12 were moving to the left?

14 Figure 2.23 shows a piece of cork floating on
the surface of water when a wave travels
through the water. On the same diagram draw
the position of the cork half a wave period later.

Figure 2.23 For question 14.
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15 Figure 2.24 shows the same wave at two
different times. The wave travels 1o the right
and the bottom diagram represents the wave
0.2 s after the time illustrated in the top
diagram. For this wave determine:

{a) the amplitude;

(b} the wavelength;

[c) the speed;

(d) the frequency.

(e} Can the graph be used to determine
whether the wave is transverse or
longitudinal?

5

0.4
o2 B

» x/m
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_o2-F i i }
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=16
Figure 2.24 For question 15,

16 Figure 2.25 is a picture of a longitudinal wave
travelling towards the right taken at a specific
time. The density of the lines is proportional
to the density in the medium the wave travels
through.

(a) Draw this wave a very small interval of
time later.
(b) Indicate on the diagram the wavelength of

this wave.

Figure 2.25 For question 16.

17 Indicate on Figure 2.26 a compression, a
rarefaction and the wavelength. Draw the
picture of this wave half a period later.

Figure 2.26 For question 17.

18 By drawing suitable diagrams, explain the
difference between transverse and longitudinal
waves.

19 In the context of wave motion explain, with
the aid of a diagram, the terms:
{a) wavefront:

{b) ray.

20 An earthquake creates waves that travel in the
earth’s crust; these can be detected by seismic
stations. Explain why three seismic stations
must be used to determine the position of the
earthquake. Describe two differences in the
signals recorded by three seismic stations,
assuming they are at different distances from

the centre of the earthquake.
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Wave phenomena I:
reflection and refraction

This chapter introduces the principle of superposition, which allows us to find the wave
disturbance when two or more waves arrive at the same point in space at the same
time. Two basic wave phenomena, reflection and refraction, are discussed. We also
introduce Huygens” principle, which determines the evolution of a wavefront and

explains reflection and refraction.

Objectives

By the end of this chapter you should be able to:

* state the principle of superposition and apply it to pulses and waves;
« state the laws of reflection and refraction and solve problems involving

these phenomena;

« give the definition of index of refraction, n = D,

S

= state Smell's law ==L

* understand Huygens' prir'n:fplc.

= 2= and n, sin #; = n; sin &; for light;

Suppose that two pulses are produced in the same
rope and are travelling towards each other from
opposite ends. Something truly amazing happens
when the two pulses meet. Figure 3.1 shows what
happens in a sequence of pictures. For simplicity
we have drawn idealized square pulses.

The disturbance gets bigger when the two pulses
meet but subsequently the two pulses simply ‘go
through each other’ as if nothing had
happened. You should contrast this with what
happens in the ordinary kind of motion: when
two balls collide they bounce off each other.

What happens when two (or more) pulses meet
at some point in space is described by the
principle of superposition, which states that

the displacement at that point is the algebraic
sum of the individual displacements. As we can
see in Figure 3.1, when the two pulses meet, the
displacement is quite large; it is, in fact, the
sum of the displacements of the two pulses.
Note the word 'algebraic’, This means that if
one pulse is ‘up’ and the other is ‘down’, then
the resulting displacement is the difference of
the individual ones.

» Mathematically, the principle of
superposition states that if y, and y; are the
individual displaceiments, then at the point
where the two meet the total displacement
has the value

Y=y +ya

b am
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{a) The pulses are approaching each other,

(b) The pulses are beginning to overlap.

(c) The overlap is complete; the pulses are on top
of each other.

(d) The pulses move through each other.

Figure 3.1 The superposition of two positive pulses.

Let us look at Figures 3.1b and c in detail. In
Figure 3.1b the two pulses are partially
overlapping - Figure 3.2 shows both of them
separately (the pulse moving toward the right is
drawn in black and the one moving to the left
in grey). There are five regions to consider. In
region a, both pulses are zero. In region b, the
black pulse is non-zero and the grey is zero. In
region c, both are non-zero. In region d, the
black is zero and the grey is not. In region e,
both are zero. The shape of the resulting pulse
is simply the sum of the two pulses. Thus, in
region a, we get zero. In region b, we get the
height of just the black pulse. In region ¢, we
get a pulse whose height is the sum of the
heights of the black and grey pulses. In region

d, the height equals the height of just the grey
pulse. In region e, we get zero.

In Figure 3.1c we have three regions to consider |
(see Figure 3.3). In a and ¢, both pulses are zero,

alb| ¢ |dle = ahi

Figure 3.2 The situation in Figure 3.1b analysed.

so the resulting pulse is also zero. In region b,
both are non-zero and the resulting pulse is the
sum of the individual pulse heights.

a b C = a b c

Figure 3.3 The situation in Figure 3.1c analysed.

If the two pulses are like the ones shown in the
sequence in Figure 3.4, the resulting pulse when
the two meet is momentarily zero. The situation
in Figure 3.4b is analysed in Figure 3.5.

‘_

|a) Positive and negative pulses are approaching
each other.

{b) The positive and negative pulses momentarily
cancel each other out when they totally overlap.

B

=

(c) The positive and negative pulses move through
each other.

e

Figure 3.4 The superposition of a positive and a
negative pulse.

Figure 3.5 The situation in Figure 3.4b analysed.
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At that instant when there is complete
cancellation of the two pulses, the rope looks
flat but it is moving as shown in Figure 3.6.

W
Figure 3.6 Parts of the rope are moving when the
two pulses cancel each other out.

You should be able to convince yourself that when
the rope looks like the first diagram in Figure 3.7
it is because the individual pulses are only

partially overlapping, as in the second diagram.

Figure 3.7.

Reflection of pulses

What happens when a pulse created in a rope
with one end fixed approaches that fixed end?
Consider the pulse of Figure 3.8. The instant
the pulse hits the fixed end, the rope attempts
to move the fixed end upward: that is, it exerts
an upward force on the fixed end. By Newton's
third law, the wall will then exert an equal but
opposite force on the rope. This means that a
displacement will be created in the rope that
will be negative and will start moving towards
the left,

= o

incident

reflected
§—

Figure 3.8 A pulse reflecting from a fixed end is
inverted.

The pulse has been reflected by the wall and
has been inverted. We can understand this in a
different, more abstract, way as follows. The
fixed end of the rope must remain fixed at all
times. Imagine a pulse travelling along an
imaginary rope that is an extension of the real
rope into the wall. This imaginary pulse is
moving from right to left. Using the principle of
superposition, we ask: what is the shape of the
imaginary pulse in order that when the real
and imaginary pulses meet, the end of the rope
{that tied to the wall) always stays fixed? The
answer is a pulse that is identical to the real
pulse but is inverted (see Figure 3.9). It is as if
the real and imaginary pulses exchange places
upon reflection.

——

Figure 3.9 The real and imaginary pulses meet,
keeping the end of the rope fixed.

If the end of the rope is not fixed but free to
move (imagine that the end of the rope is now
tied to a ring that can slide up and down a
vertical pole), the situation is different (see
Figure 3.10). Here the reflected pulse is the
same as the original pulse. There is a change of
direction but no inversion here. Can you see

why?

imcident

reflected

Figure 3.10 A pulse reflecting from a free end is
not inverted,
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Reflection and refraction
of waves

This section deals with the wave phenomena of
reflection and refraction as they apply to waves,
especially light. The study of light has played a
crucial role in the history of science. Newton
discovered that ordinary white light is
composed of different colours when he let
sunlight go through a prism and saw the
colours of the rainbow emerging from the other
side. The wave nature of light was put forward
by the Dutch physicist Christiaan Huygens in
his book A Treatise on Light published in 1690. A
bitter controversy between Huygens and
Newton (Newton had postulated a particle
theory of light) ended in Huygens' favour.

The law of reflection
The law of reflection states the following:

» The angle of incidence i (angle between
the ray and the normal to the reflecting
 surface at the point of incidence) is equal
o the angle of reflection  (angle between
the normal and the reflected ray).
The reflected and incident rays and the
normal to the surface lie on the same
plane, called the plane of incidence.

(See ngre 3.11)

Reflection can be demonstrated experimentally
in a variety of ways. For light, this is most easily
done by placing two pins in front of a mirror
and then looking at the mirror from such a
position that the image of one pin is behind the
image of the other. Two additional pins are
then placed along the line of sight of the first
two pins. If one line is drawn joining the first
pair of pins and a second line joining the other
two, it will be found that the two lines intersect
at a point on the surface of the mirror such
that the normal to the mirror at that point
bisects the angle between the original lines.

incident ncirivial reflected

ray ; ray
N angle of ¢ angle of

incidence reflection

mirmor

fa)

e eye
ohject 4

mirror

i o #
R

o
1 ¢ image

()

Figure 3.11 (a) Reflection at a plane (flat) surface.
(b} The position of an image seen in a plane mirror.

This shows that the angle of incidence 1 is
equal to the angle of reflection £ r. This is
illustrated in Figure 3.12.

image of pin |

image of pin 2
a

Mirrer
i o these two pins are on
| pinl pin2 g the line joining the
o two image pins
o

Figure 3.12 Demonstration of reflection for light.

In the case of sound, a source of sound can be
directed at a solid surface and the reflected
sound picked up by a microphone connected to
an oscilloscope. The microphone is moved until
it is in the position that gives the maximum
reading on the oscilloscope. When this position
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is recorded, it is again found that the angle of
incidence equals the angle of reflection. This is
iustrated in Figure 3.13.

-

oscilloscope

s'.ubn.rl gnnemlﬂr

Figure 3.13 Demonstration of reflection for sound.

Reflection takes place when the reflecting
surface is sufficiently smooth. This means that
the wavelength of the incident wave has to be
larger than the size of any irregularities of the
surface.

Refraction

Light travels with a velocity of 3 x 10° ms ™" in
a vacuum. In all other media, the velocity of
light is smaller. The difference in the speed of
propagation of light in different media is
responsible for an effect called refraction. (In
fact, any wave whose speed of propagation is
different in different media will experience the
same effect.) When a ray of light travelling in a
given medium, say air, strikes an interface with
another medium, say the surface of water in a
pond, it will change direction as it enters the
second medium.

Usually, when a ray of light strikes an interface
between two media, there is both reflection and
refraction (see Figure 3.14).

-s‘ih-’ﬂ,

: £TE c’_ Sty -
: Thulsknmnassmu'shw{malmw
 236). This law relates the.ames of the anjies

.......

"?ofinddmanﬂm&acﬂmwmﬂp&ddf

'.ﬁemmtﬁummeﬂl&.r,mn

normal 1o surface

incident ruy
reflected ray

medium 1

s & medinm 2

refracted .1‘.:13.-' !

Figure 3.14 A ray of light incident on the interface
of two media partly reflects and partly refracts.

In the case of light only, we usually define a
quantity called the index of refraction of a
given medium as
¢

n=—
Cm
where ¢ is the speed of light in vacuum and ¢,
is the speed of light in the medium in question.

}Iri terms of the index nfmfm:nmu Sneﬂ"
Im#ﬁ:rli,ghtﬂm rends Sitie

. ﬂ:“ﬂﬂﬂ: i s:msrz
téee ngm 3 14]

Since the speed of light is always largest in a
vacuum, the index of refraction is always larger
than one. By definition, the index of refraction
of a vacuum (and approximately of air) is one.
Thus, if we are given the index of refraction of a
medium we can find the speed of light in that
medium. For example, in a glass withn = 1.5,
the speed of light is

ms ' =2x10*ms™'

The index of refraction depends slightly on
wavelength, so rays with the same angle of
incidence but of different wavelength are
refracted by different angles. This phenomenon
is called dispersion.
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Example questions

Q1 S HITITYTITY S RSE LTF I L [T Y PFE i 31 5]
Light of wavelength 680 nm in air enters water
making an angle of 40° with the normal. Find the
angle of refraction and the wavelength of light in
water. The index of refraction of water is 1.33.

Answer

By straightforward application of Snell’s law we
find

1 xsind0" =1.33 xsind
= § =289

The wavelength in air is 680 nm, so the frequency
in air is

_3.00 % 10°

" 680 x 10

= 4.41 % 10" Hz
The frequency cannot change as the wave moves
into the second medium. Imagine an observer
right at the interface of the two media. The
frequency can be found from the number of
wavefronts that cross the interface per second.
This number is the same for both media. Since the
speed of light in water is

_ 3.00 x 10*

1.33
=226 x 10 ms™'

it follows that the wavelength in water is

_ 226 x10®
o441 x 10M
=512 nm

()} T S S T TR SRR T I

white light

blue

Figure 3.15.

The paths of rays of red and blue light passing
through a glass prism are as shown in Figure 3.15.
What can be deduced about the index of
refraction of glass for red and blue light?

Answer

Considering the first refraction when the rays first
enter the glass, we see that blue makes a smaller
angle of refraction (draw the normal at the point
of incidence to see that this is so). Hence its index
of refraction must be larger.

Refraction for other waves

We have talked at length about refraction of
light. Refraction, of course, is a phenomenon
that applies to all waves. It happens whenever
the wave changes its speed when going from
one medium to another. For example, water
waves will move more slowly when they enter a
region of shallow water. Since the frequency is
always unchanged, this means that the water
waves will have a shorter wavelength in the
shallow water (see Figure 3.16).

shallow water,
slow wave

wavelength decreases

"

-
" = L

deep waler,
fast wave

Figure 3.16 Water waves travel more slowly in
shallow water. Thus refraction takes place when
a water wave travels in water of variable depth.

It is a common observation that water waves
approach the shore almost always parallel to the
shoreline, even though when they were first
created their direction was arbitrary. This is
because as the waves approach the shore they
refract into a medium of lower wave speed
(shallow water). Thus, the direction of motion
of the wave bends toward the normal, so the
waves tend to become parallel to the shore

(see Figure 3.17).
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% shallow

deep

Figure 3.17 Wavefronts approaching the shore
where the water is shallow slow down and so
refract parallel to the shore.

A sound wave directed at a balloon filled with
hydrogen will change its direction (i.e. refract)
because the speed of sound in hydrogen is
different from the speed of sound in air. The
same is true when sound enters a liquid from,
say, air. The speed of sound is greater in
liquids than in gases, so sound entering a
liquid will increase its wavelength. Finally,
sound travels even faster in solids, metals,
rock, etc. Typically, the speed of sound in a
solid is a few thousand metres per second,
compared with a few hundred metres per
second in gases. The speed in liquids is in

between. Table 3.1 gives the speed of sound in
various media.

Air (0 °C) amn
Air (100 *C) 366
Helium (0 *C) 972
Oxygen (0 °C) 332
Water 1480
Sea water 1530
Mercury 1454
Alumininm 5100

Table 3.1 The speed of sound in various media.

Supplementary material

Huygens’ principle

(Huygens’ principle is not on the IBO
examination syllabus. It is included here for

completeness and because it is needed later.)

How does a wavefront propagate in space?

Huygens' idea was to consider every single point
on the wavefront of the wave as itself a source of
waves. This is now known as Huygens’ principle,

» Every point on the wavefront emits a
- spherical wavelet or secondary wave, of thr:
same velocity and wavelength as the '

original wave. The wavelet is assumed to be
emitted in the forward direction only. The
amplitude of the wavelet is maximum in

 the forward direction and decreases
rapidly away from that direction. The new

= wawfmnnsmenﬂiesmﬁoeﬂ:mm

tangent to all the wavelets.

We can easily see that a plane or circular
wavefront moving undisturbed forward easily
obeys this construction (see Figure 3.18). The
same is true for a spherical wave.

v
A—i
new
o wavelront
touches wavelets
v}
old
wavefront, o
=10 new wavefront

(i time A

Figure 3.18 Each point on the old wavefronts
acts as a source of spherical wavelets in the
forward direction. The new wavefront
touches all these wavelets.

The test comes when the wavefront encounters
an obstacle of some kind or another. As we will
soon see, the principle allows us to understand
the phenomena of reflection and refraction.

Reflection

Huygens’ principle allows us to theoretically
understand the law of reflection in the following
way. Consider a wave that is incident on a plane
surface. Figure 3.19 shows two incident
wavefronts, I, and k. The first wavefront to touch
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Figure 3.19 Huygens' construction applied to
reflection.

the surface is f; and it touches al point A. L
touches later, say a period T later, at B. We have
drawn a wavelet centred at A, All points on this
wavelet have been emitted one period after those
on Iy and the same is true for point B. Thus, there
must be a wavefront that contains both point B
and a point on the wavelet. This wavefront is
found by drawing a tangent from B to the
wavelet. We call this the reflected wavefront K.

It is then clear from simple geometry that the
angle of incidence (£i) equals the angle of
reflection (£r): lengths AD and EB are equal since
they both represent a wavelength. Thus, triangles
ADB and AEB are equal, being right-angled and
having two equal sides. Hence (EAB (= 41}
equals LDBA (= /r); that is, the angle of
reflection equals the angle of incidence.

Notice that the angle of incidence is defined as
the angle between the normal to the surface and
the incident ray. This angle is exactly the same
as the angle between the surface and the
incident wavefront. The same is true for the
angle of reflection.

Figure 3.20 shows the effects of various barriers
on waves in a ripple tank.

Refraction

The law of refraction is a consequence of
Huygens’ principle as follows. Figure 3.21 shows
a wavefront (AB) that has hit the interface at A. A
previous wavefront (CD) has already hit the
interface at C at a time equal to one period earlier.
{Since we are plotting wavefronts one wavelength
apart it means that wavefront CD hit the interface
a time equal to one wave period earlier.)

(a) N
wavefronts
in
wavelength, & l
4 :
wavefronts
out

(b)

Figure 3.20 Waves in a ripple tank. (a) Waves
reflected from a 45° barrier. Their
wavelength stays the same. (b) Straight
{plane) waves approach a concave barrier.
The reflected waves are focused to a point.
{c) Plane waves approach a convex barrier.
The reflected waves spread out.

medium |

medinm 2

Figure 3.21 Huygens’ construction applied to
refraction.
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Notice again that the angles of incidence and
refraction are equal to the angles between the
surface and the incident and refracted
wavefronts, respectively.

At time t = 0, say, which is the time wavefront
CD hits the interface, point C will emit a wavelet
as shown. The radius of this wavelet is the
wavelength in medium 2. Assuming that the
wave is slower in medium 2, it follows that

the wavelength will be smaller than the
wavelength in medium 1. To find the new
wavefront we must draw a tangent from A to this
wavelet. Hence, the refracted wavefront is R, as
shown in Figure 3.21. From trigonometry

e DA
sinf; = AC
: CE

= —
sind; AC

But DA is the wavelength in medium 1 and CE
the wavelength in medium 2, so it follows that

sinfhy A 10y
sinf, Ay o) [}

where the last equality holds since the
frequency is the same in both media. This is
Snell’s law.

Figure 3.22 shows refraction of water waves in a
ripple tank as the waves move from deep to
shallower water. In shallower water the waves
have a lower speed.

,//////, -
*"”/ allow

Figure 3.22 Refraction of water waves at a
‘step’.

The fact that the law of refraction (Snell’s law) is
a consequence of a principle of wave motion
(Huygens’ principle) is strong evidence that light
is indeed a kind of a wave.

Questions

1 Two pulses of equal width and height are
travelling in opposite directions on the same
string as shown in Figure 3.23, When the
pulses completely overlap, what is the shape
of the string?

—

—
Figure 3.23 For question 1.

2 Two pulses of equal width and height are
travelling in opposite directions on the same
string as shown in Figure 3.24. When the
pulses completely overlap, what is the shape
of the string?

—_—

=~

Figure 3.24 For question 2.

3 The wave pulses shown in Figure 3.25 travel
at 1 em s~' and both have width 2 cm. The
heights are indicated on the diagram. In each
case, draw the shape of the resulting pulse
according to the principle of superposition at
limest=05s5t=1.0s5and!=1.5s. Take
{ = 0 s to be the time when the pulses are
about to meet each other.

height = | unit

height = 2 units

Figure 3.25 For question 3.



4.3 Wave phenomena [: reflection and refraction 237

4 Two waves are simultaneously generated on a
string as shown in Figure 3.26. Draw the
actual shape of the string.

TLELTLITLIT

-0.2
0.4

CITJITIETELY

Figure 3.26 For question 4.

5 Red light of wavelength 6.8 X 10°7 m enters

glass with an index of refraction of 1.583 from
air, with an angle of incidence of 38°. Find:
(a) the angle of refraction;

(b) the speed of light in the glass;

(c) the wavelength of light in the glass.

6 Light of frequency 6.0 X 10" Hz is emitted
from point A and is directed toward point B a
distance of 3.0 m away.

(al How long will it take light to get to B?
(b) How many waves fit in the space between

A and B?

7 Acray of light is incident on a rectangular
block of glass of index of refraction 1.450 at
an angle of 40°, as shown in Figure 3.27. If
the thickness of the block is 4.00 cm, find the
amount d by which the ray is deviated.

+.0cm

Figure 3.27 For question 7.

8 A ray of light enters glass from air at an
angle of incidence equal to-45°, as shown in

Figure 3.28. Draw the path of this ray
assuming that the glass has an index of
refraction equal to 1.420 and the plastic has
an index of refraction of 1.350.

45°
normal air

glags

wir

Figure 3.28 For question 8.

9 A ray of light moving in air parallel to the base
of a glass prism of angles 45°, 45° and 90°
enters the prism, as shown in Figure 3.29.
Investigate the path of the ray as it enters the
glass. The index of refraction of glass is 1.50.

glass

Figure 3.29 For question 9.

10 The speed of sound in air is 340 ms™' and in
water it is 1500 m s~'. At what angle must a
beam of sound waves hit the air-water
interface so that no sound gets transmitted
into the water?

11 A pulse with the shape shown in Figure 3.30
travels on a string at 40 m s~ towards a fixed
end. Taking t = 0 s to be when the front of the
pulse first arrives at the fixed end, draw the
shape of the string at: t = 1.0 ms; t = 1.5 ms;
1=20ms; t=25ms t=3.0ms =4 ms.

Figure 3.30 For question 11,
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Wave phenomena II:
diffraction and interference

This chapler introduces two of the fundamental wave phenomena, diffraction and
interference. These phenomena are so characteristic of wave behaviour that anything
showing these phenomena can be defined to be a wave.

Objectives
By the end of this chapter you should be able to:

understand that diffraction is the spreading of a wave through an
opening or past an obstacle;

appreciate that significant diffraction takes place only if the wavelength is
comparable to or bigger than the size of the opening;

decide if diffraction for a given wave will take place in a given situation;
understand that, as a result of superposition, when two identical waves
arrive at the same place they will experience constructive interference if the

crest of one matches the crest of the other, or destructive interference if the
crest of one matches the trough of the other;

appreciate the significance of the path difference in the phenomenon of
interference.,

Diffl‘atti on Let us first assume that the wavelength is very

The spreading of a wave as it goes past an
obstacle or through an aperture is called ‘ !
diffraction. Let us consider a plane wave of
wavelength . propagating towards an aperture .
of size a. H i

(3

small compared with @ (see Figure 4.1).

wavelengith small compared with aperture

no wave here

| |
e
| |
II.

| A e
RAAAAARA

What will the wavefronts look like after the
wave has gone through the aperture? As we
will see, the value of the wavelength in

relation to the aperture size will be crucial in Figure 4.1 When the wavelength is small

determining what answer we get. compared wilt]} t]m: up?ning lr.?f Ithe aperture, the
amount of diffraction is negligible,

T

no wave here

W

wave

.S_' ;
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That part of the wave that is blocked by the |
screen does not propagate through and only the
part which is free to go through does so. If the
wave in question is light, this picture says that
light goes through the opening, so that if we

put a screen beyond the aperture we will see

light on an area of the screen identical to the
opening and darkness around it. Light travels in
straight lines and does not bend as it goes
through the aperture. There is no diffraction.

On the other hand, if the wavelength is
comparable to or bigger than a, the new
wavefronts are curved and the wave spreads
around the edges of the opening (see Figure 4.2).

wavelength comparable to aperiure

the wave is
spreading |

Figure 4.2 When the wavelength is comparable to
the opening of the aperture, diffraction takes
place.

If we put a screen some distance away from the
aperture, we would see light in places where we
would not expect any, such as at points A and B.
This is the phenomenon of diffraction.

» Diffraction takes p!ace whenever a wave
- whose wavelength is comparable to or
bigger than themefanapermmorm 3 sdeas |
 obstacle attempts to move ﬂmm;g’h or past
'th:aperrureorobstac]e - -

(Note that here ‘comparable 1o’ can mean
- that the wavelength is a few times smaller
thahthdapermresize.] i

Supplementary material

Application of Huygens’ principle helps

to understand the phenomenon of diffraction. If
the aperture size is very small, it is as if only one
point on the wavefront will act as a source of
waves and these will be circular: that is, the wave
will spread. If the aperture is large, then many
points on the wavefront will act as sources of
secondary waves and these will tend to be planar:
that is, there will not be appreciable diffraction.

(It must be realized, though, that Huygens'
principle works in the same way for small and
large wavelengths, so the principle by itself would
give the same answer in both cases. It is a refined
and much more sophisticated principle, the
Huygens-Fresnel principle, that gives the correct
wavefronts past the aperture. This principle is,
however, beyond the scope of this book.)

Diffraction explains why we can hear, but not
see, around corners. For example, a person
talking in the next room can be heard through
the open door because sound diffracts around
the opening of the door - the wavelength of
sound for speech is roughly the same as the
door size. On the other hand, light does not
diffract around the door since its wavelength 1s
much smaller than the door size.

Other examples of diffraction are shown in
Figures 4.3 and 4.4. Figure 4.3 shows diffraction
around an obstacle.

w

Figure 4.3 Diffraction also takes place when a
wave moves past an obstacle.
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If the wavelength is much smaller than the
obstacle size, no diffraction takes place, as seen
in Figure 4.4a. Diffraction does takes place if
the wavelength is comparable to the obstacle
size as seen in Figure 4.4b.

L

() (b}

Figure 4.4 (a) If the wavelength is much smaller
than the obstacle, no diffraction takes place and
a shadow of the object is formed. (b) If the
wavelength is comparable to the obstacle size,
diffraction takes place and the wave appears far
from the object in the region where the shadow
was expected.

Interference

The most characteristic property of waves is
their ability to interfere and diffract. The

fact that light exhibits these phenomena is
evidence that light is a wave. Interference is
the result of superposition of two waves. We
have met this principle of superposition in the
previous chapter where we applied it mainly to
individual pulses. Interference for light was
demonstrated in 1801 by Thomas Young, an
English scholar who also came close to
deciphering hieroglyphics.

Let us be specific by considering two sources 5,
and 5;. Waves from the two sources meet at some
point, say P, some distance away (see Figure 4.5).

Suppose that at time t = 0 both sources emit
identical waves (same amplitude A, wavelength
4 and frequency f ). The wave from $, will take
a certain time to arrive at P. From Figure 4.6, we
read off this time as 2 s. The wave from the
second source will take longer. Suppose that it
takes 4 s (see Figure 4.7),

I.'l
51 @ R ——
ﬂr1 d’!
P
fe—— . .
] =
& dy

Figure 4.5 Interference from two sources. In the
top diagram the waves arrive at P from the two
sources and travel different distances in getting
there. In the bottom diagram there is really only
one source but the point P receives two waves,
The first comes from the source S directly and
the second wave is first reflected off the screen
and then travels to P.

wave from 5,

rs

Figure 4.6 The first wave arrives at P 2 s after
emission from the source.

wave from S

0.5

=1
Figure 4.7 The second wave arrives at P 4 5 after
emission.
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We see that, even though the waves are identical
at emission, when they arrive at the observation
point P, the crest of one matches the trough of
the other. Thus, when they are added, according
to the principle of superposition the resulting
wave will be zero. We have a case of destructive
interference: the two waves have cancelled each
other out. If the two waves are sound waves, it
means that at point P we hear no sound at all.

Suppose that we now change the distances of
the two sources from P and the two waves
arrive at P as shown in Figures 4.8 and 49.

wave from §,

1 4

0.3

=1
Figure 4.8 The first wave arrives at P 2 s after
emission.

wave from 54

0.5

0.5

=1t

Figure 4.9 The second wave arrives at P 6 s after
emission,.

The arrival time from the first source is still 2
but that from the second source is & 5. Now the
crests of one wave match the crests of the other.
Thus, when we add them, we obtain a wave
with double the amplitude of the individual
waves (from 6 s on), as shown in Figure 4.10.

sum of wo waves

20

)

—l.l] frcecassssssassssnannnnen

Figure 4.10 The sum of the waves from 6 5 on
(when both waves are present) has an amplitude
that is double that of the individual waves.

1.5

I e

s

This is a case of constructive interference. If the
waves are sound waves, we would hear a very
loud sound at point P. (Since loudness is
proportional to the energy carried by the
wave, and energy is proportional to the square
of the amplitude, the loudness would be four
times as great as the loudness of one wave
alone.)

Note that the period of the individual waves is
4 5. In the first case of destructive interference
the difference in arrival times was 2 5. In the
case of constructive interference the difference
in arrival times was 4 5. You must be able to
convince yourself that, we would get destructive
interference also when the difference in arrival
times is 65, 10 s, 14 5, and so on (i.e. half-
integral multiples of the period). Similarly, we
would get constructive interference for
differences in arrival times of 0 s, 4 5 (as in the
example), 85, 12 5, and so on (i.e. integral
multiples of the period).

What is the general rule? If the distance from
S, to P is d, and the distance from S, to P is d»
{as shown in Figure 4.5), then the time of arrival
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of the first wave is d, /v, where v is the wave
velocity. Similarly, the wave from S; will arrive
at P after a time d» /v. The difference in arrival
times is thus

dl dg

v ¥
There are two extreme cases: in case (i), the
difference # - ‘T'- 15 an integral multiple of the
period T of the wave. Then the crests of the
wave from Sy match the crests of the wave
from 5z. The resultant wave has therefore the
maximum possible amplitude, twice the
amplitude of one of the waves. In case (ii}, the
difference % — 2 is a halfintegral multiple of the
period. Then the maxima of one wave match
the minima of the other. The two waves cancel
each other out completely. The wave observed
is zero. In case (i) we have constructive
interference, and in case (ii) we have

destructive interference.
» The condition for constructive interference is

s e
buTv=iso
.2 '-d.f_-—- doras 17, :
m=0, 4142 43, .
that is, the path difference must be an
- integral multiple of the wavelength.
di—dp =S (n)ai - T
g RS e b R T M

As we already mentioned, if the wave is a sound
wave, points of constructive interference are
points of high intensity of sound. Points of
destructive interference are points of no sound
at all. If the wave involved is light, and then
constructive interference means bright light,
and destructive interference means points of
darkness.

» If the path difference is anything other
than an integral or halfintegral multiple
of the wavelength, then the resultant

“amplitude of the wave at P will be some
value between zero and 24, where A is the
~amplitude of one of the waves.

Example question

01 srrassI TS T Esss sy errrernyy
Waves leaving two sources arrive at point P. Point
Fis 12 m from the first source and 16.5 m from
the second. The waves have a wavelength of 3 m.
What is observed at P?

Answer

The path difference is 4.5 m. It equals

(14 3) = 3 m: that is, it is a half-integral multiple
of the wavelength. We thus have destructive
interference,

| Questions

1 Planar waves of wavelength 1.0 cm approach
an aperture whose opening is also 1.0 cm.
Draw the wavefronts of this wave as they
emerge through the aperture.

2 Repeat question 1 for waves of wavelength
1 mm approaching an aperture of size 20 cm.

3 In the corridor shown in Figure 4.11 an
observer at point P can hear someone at
point Q but cannot see them. What physical
phenomena may account for this? How
could P see F

DL‘

]

P
Figure 4.11 For question 3.
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6 A car moves along a road that joins the twin
audio oscillator. An observer walks along antennas of a radio station that is broadcasting
the straight line joining the speakers (see at a frequency of 90.0 MHz (see Figure 4.14),
Figure 4.12). At a point M halfway between When in position A, the reception is good but
the speakers he hears a loud sound. By the it drops to almost zero at position B. What is
time he gets to point P a distance of 2.00 m the minimum distance AB?

from M he hears no sound at all. Explain
how this is possible. Find the largest possible
wavelength of sound emitted by the
loudspeakers.

4 Two loudspeakers are connected to the same

é’ﬁ’%

@ + +— - - E Figure 4.14 For question 6.
M

PR AR et 7 Two sources emit identical sound waves with
. . a frequency of 850 Hz.

5 A radio station, R, emits radio waves of (2l An observer is 8.2 from the fisst sorce
wavelength 1600 m which reach a house, .H' and 9.0 m from the second. Describe and
directly and after reflecting ‘fram a mountain, explain what this observer hears.

M, behind the house (see Figure 4.13). If '_hE b} A second observer is 8,1 m from the first
reception at the house is very poor, what is source and 8.7 m from the second. Describe
the shortest possible dislfance between the : and explain what this observer hears.

house and the mountain? (Take the speed of sound 1o be 340m s ')

8 In the context of wave motion, state what
you understand by the term superposition.
IHustrate constructive and destructive
interference by suitable diagrams.

AT s

Figure 4.13 For question 5.



The Doppler effect

This chapter looks at the Doppler effect, the change in frequency of a wave when there
is relative motion between the source and the observer. The Doppler effect is a
fundamental wave phenomenon with many applications. This chapter discusses this
phenomenon quantitatively. The phenomenon applies to all waves but sound waves only

are considered here.

Objectives

By the end of this chapter you should be able to:

| * understand the Doppler effect in a qualitative way and explain it by
drawing appropriate diagrams for a moving source or a moving observer;

| = derive the Doppler formula for a moving source [, = —

£ .
= and a moving

observer f, = f,(1+ ), and use these in solving problems;
| = qualitatively explain the Doppler effect by suitable wavefront diagrams.

The Doppler effect

Consider a source of waves and an observer who
receives them. If there is relative motion
between the observer and the source (i.e. the
source or the observer, or both, move) then, in
general, the observer will receive the wave at a
frequency that is different from the emitted
frequency. This is a phenomenon of everyday life.
For example, if an approaching car creates a high-
pitched sound, as it goes past us and recedes the
frequency of the sound becomes lower,

» The Doppler effect is the change in the
frequency of a wave received by an observer,
compared with the frequency with which it
was emitted. The effect takes place whenever

- there is motion between the emitter and

We can understand the Doppler effect in
terms of wavefront diagrams. Consider first a
stationary source of waves emitting circular

wavefronts (Figure 5.1). Suppose for simplicity
that the source emits a wave of frequency f
that travels with speed c. This means that [
wavefronts are emitted per second. An observer
who is also stationary will clearly receive [
wavefronts every second as well, so there is no
Doppler effect.

Figure 5.1 The wavefronts emitted by a stationary
source are concentric. The common centre is the
position of the source.

Now consider a stationary observer and a source
of sound that moves with speed v, (<c) towards
the observer (Figure 5.2). The source emits sound
of a single frequency f. as measured by an
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stationary
observer

SOUrCE Moving

Figure 5.2 A source is approaching the stationary
observer with speed v..

observer moving along with the source. (In
what follows ¢ stands for the speed of the wave,
i.e. here for the speed of sound in still air and
later on for the speed of light in a vacuum.)

In a time equal to one second, the source will
therefore emit [, wavefronts. In that same time
interval, the source will move a distance equal
to v, towards the stationary observer (Figure 5.3).

source v

s
._. towards stationary observer

SOUICE emits
first wavefront

v, =¥,

-+

B

L
k4

[ wavefronts in
this distance

b B L

s0Urce emits
last wavefront

Figure 5.3 Determining the Doppler frequency.

first wavefront is now here

Therefore, these f; wavefronts are within a
distance of ¢ — v, and so the stationary observer
will measure a wavelength (separation of
wavefronts) equal to

£—v,
Ao = -
(e} f!,

The frequency measured by the stationary
observer is therefore

= f,

€ — Vs

Dividing through by ¢ gives

fs source moving towards
observer

As the source approaches, the stationary
observer thus measures a higher frequency than
that emitted by the source.

A similar calculation for the case of the source
moving away from the stationary observer
gives

f fs SOUrce moving
0
away from observer

In the case of a stationary source and a moving
observer we may argue as follows. First let us
consider the case of the observer moving
towards the source. The observer who moves
with speed v, with respect to the source may
claim that he is at rest and that it is the source
that approaches him with speed v,. The
observer will then measure a higher wave
speed, equal to ¢ 4+ v,. We are now back to the
case of a moving source, and so the frequency
measured by the observer is

1 — 22—
L+¥g

fole +vo)
C+Vo—V¥o
Flc 4+ vo)
c

Dividing through by ¢ gives

v ;
f,=f. (] 4 _o) observer moving
C towards source
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Similarly, if the observer moves away from the
source we get

£ g (l Vo observer moving away
“ ’ from source

Notice carefully that, in the case of the moving
source and the stationary observer, the
wavelength measured by the observer, 2, is
different from that measured by the source, 4.
Consider the case of a source moving towards
the observer:

o =

hs

However, in the case of the moving observer
(towards the source for example):

4V
Ao = r
_ C+V
C
Tk
Ao =As

and is the same as that measured by the source,

This is why in defining the Doppler effect we
refer to the change in frequency measured by

the observer and not the change in wavelength.

The Doppler effect has many applications. One
of the most common is to determine the speed
of moving objects from cars on a highway (as
the next Example question shows). Another

application is to measure the speed of flow of
blood cells in an artery.

Example questions

Q1 TR ST TR TSP S M AT
A sound wave of frequency 300 Hz is emitted
towards an approaching car. The wave is reflected
from the car and is then received back at the
emitter at a frequency of 315 Hz. What is the
velocity of the car? (Take the speed of sound to be
340 ms ')

Answer

The car is approaching the emitter so the
frequency it receives is

340 + o
340

Hz

fy = 300 %

where u is the unknown car speed. The car now
acts as an emitter of a wave of this frequency ( 14,
and the original emitter will act as the new
receiver, Thus, the frequency received (315 Hz) is
(car is approaching)

315 = (SDE} " 340 + n) 340

x ————
340 M0 —u
from which we find u=8.29ms'.

() T R S N ST RIS
A train with a 500 Hz siren on is moving at a
constant speed of 8.0 m s in a straight line. An
observer is in front of the train and off its line of
mation. What frequencies does the observer hear?
(Take the speed of sound to be 340 ms~'.)

Answer

What counts is the velocity of the train along the
line of sight between the train and the ohserver.
When the train is very far away (Figure 5.4} it
essentially comes straight towards the observer

4 P
................................. il
train far away train close by
abserver @

Figure 54.
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and so the frequency received is

340
340-8
7 510 Hz

= 500 =

When the train is again very far away to the right,
the train is moving away from the observer and
the frequency received will be

. R =
fo= I

C+ v
340
340+ 8
2= 490 Hz

= 500 x

As the train approaches, we take components of
the train’s velocity vector in the direction along
the line of sight and the direction normal to it (see
Figure 5.4).

As is seen from the diagram, the component along
the line of sight is decreasing as the train gets
closer to the observer. Thus, the observer will
measure a decreasing frequency. It starts at 510 Hz
and falls to 500 Hz when the train is at position P,
As the train moves past P to the right, the observer
will hear sound of decreasing frequency starting al
500 Hz and ending at 490 Hz.

Thus, the observer hears frequencies in the range
of 510 Hz to 490 Hz, as shown in Figure 5.5.
fiHz

510

L1 [ . N —

490

.
*

distance
observer
Figure 5.5.

The Doppler effect also applies to light, but the
equations giving the frequency observed are
maore complicated. However, in the case in
which the speed of the source or the observer is
small compared to the speed of light, the

equations take a simple form:
v :
Af = % f  for light only

In this formula v is the speed of the source or
the observer, ¢ is the speed of light and [ and X
stand for the frequency and wavelength
emitted. Then Af gives the change in the
observed frequency (and A the change in the
observed wavelength).

Example question

()3 F NS SRS P YIS I s T
Hydrogen atoms in a distant galaxy emit light of
wavelength 658 nm. The light received on earth is
measured to have a wavelength of 689 nm. State
whether the galaxy is approaching the earth or
moving away, and calculate the speed of the
galaxy.

Answer

The received wavelength is longer than that emitted,
and so the galaxy is moving away from earth.

The emitted frequency is

g
f=-
2

~3.00 x 10"

658 x 10-°

=4.56 % 10" Hz

and the received frequency is

f=

ol B st

300 = 10°
T BBY % 1077

=4.35 x 10" Hz

giving a shift of Af = 0.21 x 10" Hz. Hence the
speed is found as follows:

Af
Af==f=v="8
c f
_3.00 % 10" x 0.21 x 10"
N 4.56 x 10
v=1.4x 100 ms™"
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Take the speed of sound to be 343 m s~
problems that follow.

Uin all the

1 A source of sound is directed at an
approaching car. The sound is reflected by
the car and is received back at the source.
Carefully explain what changes in frequency
the abserver at the source will detect.

2 Light from a nearby galaxy is emitied at a
wavelength of 657 nm and is observed on
earth at a wavelength of 654 nm. What can
we deduce about the mation of this galaxy?

3 Explain, with the help of diagrams, the
Dappler effect, Show clearly the cases of a
source that {a) moves towards and (b) goes
away from a stationary observer as well the
case of a moving observer.

4 A source approaches a stationary observer
at 40 m s~' emitting sound of frequency
500 Hz. What frequency does the observer
measure?

5 A source is moving away from a stationary
observer at 32 m s™' emitting sound of
frequency 480 Hz. What frequency does the
observer measure?

6 A sound wave of frequency 512 Hz is emitted
by a stationary source toward an observer
who is moving away at 12 m s™'. What
frequency does the observer measure?

7 A sound wave of frequency 628 Hz is
emitted by a stationary source toward an
observer who is approaching at 25 ms™'.
What frequency does the observer

measure?

8 A sound wave of frequency 500 Hz is
emitted by a stationary source toward a
receding observer. The signal is reflected by
the observer and received by the source,
where the frequency is measured and found
to be 480 Hz. What is the speed of the
observer?

9 A sound wave of frequency 500 Hz is
emitted by a moving source toward a
stationary observer. The signal is reflected by
the observer and received hy the source,

10

where the frequency is measured and
found to be 512 Hz. What is the speed of
the source?

A disc rotates about its axis with constant
angular velocity. A point on the rim moves
with a speed of 7.5 m s7'. Sound of
frequency 500.0 Hz is emitted from a source
on the circumference of the disc in
directions parallel to the source’s velocity

as shown in Figure 5.6, and is received by
an observer very far away from the disc.
What frequencies does the observer
measure?

1o observer

v

emitted waves

Figure 5.6 For question 10.

1

12

13

Consider the general case when both the
source and the ohserver move. Let v, be the
velocity of the source and v, that of the
observer. In the frame of reference in which the
observer is at rest, the waves appear to move
with velocity €+ v, and the source appears o
move with velocity v, + v,. Thus, show that the
frequency received by the observer is

fos £ C+ vy

C— v
Consider a source moving away from a
stationary observer with speed v. The source
emits waves of speed ¢ and wavelength A,.
Explain why the observer will measure a longer
wavelength for the waves received and show
that the shift in wavelength AL =4, — A,
obeys #* = £,
A source of sound emits waves of frequency £
towards an object moving away from the
source. The waves are reilected by the object
and are received back at the source. The
speed of the object is v
(a) Deduce that the frequency of the reflected

waves as measured by an ohserver at the
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source is given by

(b} If £ is small, it can be shown in
mathematics that

1 v
=l —-

142 c

Deduce that the magnitude of the
frequency shift measured by the observer at
the source becomes
ar=2¢
c
() Ultrasound of frequency 5.000 MHz
reflected from red blood cells moving in an
artery is found to show a frequency shift of
2.4 kHz. The speed of ultrasound in blood
is 1500 ms™,
{i) Estimate the speed of the blood cells.
(ii) In practice, a range of frequency shifts is
observed. Explain this observation.

14 The sun rotates about its axis with a period
that may be assumed to be constant at 27
days. The radius of the sun is 7.00 x 10 m.
Discuss the shifts in frequency of light emitted
from the sun’s equator and received on earth.
Assume that the sun emits monochromatic
light of wavelength 5.00 x 107 m.

15 The human ear can detect frequencies in the
range of about 20 Hz to 20 kHz. A source of
sound moves towards and then away from a
stationary observer. Describe qualitatively the
changes, if any, in the frequency of sound
heard by the observer when the source emits
{a) sound of a single frequency 500Hz;

(b) sound with frequency in the range 500Hz
to 1000Hz;

(c) all frequencies covering the entire audible
range of the observer,

16 In a binary star system, two stars orbit a
common point and move so that they are
always in diametrically opposite positions.
Light from both stars reaches an observer on
earth. Assume that both stars emit light of
wavelength 6.58 x 107 m. -

(a) When the stars are in the position shown in
Figure 5.7, the observer on earth measures
a wavelength of light of 6.58 x 107 m
from both stars. Explain why there is no
Doppler shift in this case.

i TR

Figure 5.7 For question 16{a).

(b) When the stars are in the position shown in
Figure 5.8, the earth observer measures
two wavelengths in the received light,

6.50 x 107 m and 6.76 x 107 m.
Determine the speed of each of the stars.

star B
_..m'-"“."'"--._".\
"
'!".‘ "h“
i ™,
7 e ,
v ., i
{ i-’ "i ! wowards earth
1 “.'\‘\“ ';-"'
\ " : ]
b star A
4
-
e o

i TP

Figure 5.8 For question 16(b).

17 Asource of sound emits waves of frequency
850 Hz in all directions as it approaches and
then recedes from an observer close to its
path. The power of the sound emitted is
constant.

(a) Draw a sketch graph (no numbers required)
to show the variation with time of the
intensity of the sound heard by the
observer.

The observer is 4.0 m away from the line of

motion of the source. The source moves at a
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constant speed of 12 m s™', and its initial

position is 24 m away, as shown in Figure 5.9.

(b} Draw a detailed graph to show the
variation with time of the frequency of the
sound heard by the observer.

(c) How does your graph in (b) change if
the source is moving with constant
acceleration? (Assume that the acceleration
is 2.0 m s, the initial position is the same
{24 m away) and the initial velocity is
10 m s™.) Draw a detailed graph and
explain the shape you have drawn.

12mst
—
- -
source Mm I 4.0m
L]
observer

Figure 5.9 For question 17.

18 Sound of frequency 530 Hz is emitted by a
stationary source. An observer approaching
the source at high speed receives the sound
and measures a frequency of 580 Hz.

(a) Determine the speed of the observer.

(b} Calculate the wavelength of the sound as
measured by
(i) the source;
(ii} the observer.

Take the speed of sound in still air to be

340 ms.

19 (a) The shift in frequency due to a source of

light moving at speed v and emitting light
of frequency fis given by

Af=2f
-
Using the approximation (valid if * is small)

1 ~1 v
T2z T ¢

show that the shift in wavelength is given by
Ak = A
c

where A is the emitted wavelength.

(b) Calculate the speed of a galaxy emitting
light of wavelength 5.48 x 10~ m which
when received on earth is measured to
have a wavelength of 5,65 x 10" m,
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A special wave is formed when two ordinary identical waves travelling in opposite
directions meet. The result is a standing (stationary) wave: a wave in which the crests

do not move.

Objectives

. By the end of this chapter you should be able to:

* state the differences between a standing wave and a travelling wave;

* describe how a standing wave is formed,

* draw the various harmonics on strings and tubes and find the wavelength in

terms of the string or tube length;

« state the meaning of the terms fundamental and harmonics;

* state the meaning of the term resonance;
= solve problems with standing waves,

Standing waves on strings
and tubes

P When two waves of the same speed and
wavelength and equal or almost equal
amplitudes travelling in opposite directions
meet, a standing wave is formed. This
interesting wave is the result of the
superposition of the two waves travelling in
opposite directions.

The main difference between a standing wave
and a travelling wave is that in the former no
energy or momentum is transferred. A standing
wave is characterized by having a number of
points at which the displacement is always zero.
These are called nodes. (In a travelling wave,
there are no points where the displacement is
always zero.) The points at which the
displacement is a maximum are called
antinodes, (Note that the nodes always have
zero displacement whereas the-antinodes are at

maximum displacement for an instant of time
only.) In Figure 6.1 a string of length [ has been
plucked in the middle and is about to be
released.

"T[,-““""““""“"""""

# ¥

+4

Figure 6.1 A standing wave on a string with both
ends fixed. The string is held in this position
and then released. A standing wave like this
with a single antinode 15 known as a
fundamental standing wave.

Successive pictures of the string will then look
like Figure 6.2: the end points of the string
remain fixed at all times (nodes) but the rest
of the string oscillates. The middle point is

the point on the string with the largest
displacement (antinode). The string will return
to its original position after a time equal to the
period of the wave. In the absence of friction,
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Figure 6.2 Positions of the string at various time
intervals after being released. The dark circles
show the positions of the nodes. The dotted line
shows the position of the antinode.

this oscillation will continue forever. When the
string is in its original position ({ = 0) all the
energy of the wave is in the form of potential
energy of the stretched string. When the string
assumes its undisturbed position, all the energy
is in the form of kinetic energy. At all other
positions the energy of the string consists of
both potential and kinetic energy. Note that the
crest of this wave (i.e. the antinode) does not
move to the right or left as a crest does in a
travelling wave.,

The standing wave depicred above has a specific
wavelength. Note that we have fitted half a full
wave on the length of the string. This means that

=1
= A =21

ha >

The wave with A = 2l is not the only standing
wave that can exist on this string, however.
Figure 6.3 shows the next standing wave. Note

F Y
k.

Figure 6.3 A standing wave with three nodes and
two antinodes. A standing wave like this is
known as the second harmonic.

that the only constraint we have is that the
ends of the string are nodes. Here, we have
fitted one full wave on the string. Thus, 4 = L.
This standing wave has three nodes and two
antinodes,

An infinity of standing waves can thus exist on
the string by ‘fitting" waves with the constraint

| that the ends are nodes. The next standing wave
is shown in Figure 6.4,

Figure 6.4 A standing wave with four nodes and
three antinodes. A standing wave like this is
known as the third harmonic.

| For the third harmonic, we have fitted one and
a half full waves on the string. Thus,

3

A=l
2
- 2L
3
In general, we find that the wavelengths satisfy
A= ?L , n=1,23.4,...
n

The wave with wavelength corresponding to

n =1 is called the fundamental mode of the
string or the first harmonic. All other modes
are called higher harmonics. So, for example,

| the mode with n = 3 is the third harmonic. The
| fundamental mode has the largest wavelength
and thus the smallest frequency (f = &, where
v is the speed of the wave).

"mmmﬁum_; Geaied um
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Figure 6.5 shows that particles between two
consecutive nodes move in the same direction.
Particles between the adjacent pair of nodes
move in the opposite direction.

Figure 6.5 All points between two consecutive
nodes are in phase: that is to say, they move in
the same direction. They differ in phase by 180°
with those between the next pair of nodes,
which are moving in the opposite way.

If one end of the string is free and the other
fixed, then the free end must be an antinode
and the fixed end a node. The allowed
wavelengths are then

41

A=—, n=1,305,...

n
(Here n is an odd integer.) Examples of these
standing waves are shown in Figures 6.6-6.8.

You must convince yourself that the wavelengths
of these harmonics are indeed those given by
the formulai = .n=1,3,5,...

¥

*

Figure 6.6 The fundamental standing wave on a
string with one end fixed and the other free.

Figure 6.7 The second harmonic.-

Figure 6.8 The third harmonic.

When both ends are free, the condition is

21
A=—, n=12734,...

n
The situation here is entirely analogous to that
with both ends fixed with the roles of node and
antinode interchanged (see Figure 6.9).

Figure 6.9 Standing waves on a siring with both
ends free are similar to those for both ends
fixed except that nodes and antinodes are
interchanged. The fundamental and second
harmonic are shown here.

We have discussed standing waves exclusively in
terms of waves on a string whose ends are fixed
or free. Exactly the same results apply to sound
standing waves formed in a pipe (such as a
musical instrument) whose ends are open
(corresponding to free string ends) or closed
{corresponding to fixed string ends) - see
Figure 6.10. Nodes exist at closed ends and
antinodes at open ends.

I |
(a) left end (mouth) is (b left end (mouth) is
open, right end is closed  open, right end is open

Figure 6.10 (a) A pipe with one end closed and one
open. (b) A pipe with both ends open.
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Supplementary material

Modes in this case correspond to points in the
pipe where the air molecules are not moving
whereas antinodes correspond to points where
the air molecules move with maximum
displacement (see Figure 6.11). These are called
displacement nodes and antinodes. Note,
however, that at a displacement node the
pressure of the gas varies the most (i.e. we have
a pressure antinode), and at a displacement
antinode the pressure variation is zero (i.e. we
have a pressure node).

Figure 6.11 Air molecules in the pipe vibrate the
most at antinodes and not at all at nodes.

You don’t need to memorize the formulae for
wavelength in terms of string or tube length.
Rather, you should note that in all cases the
distance between successive nodes or antinodes
is half a wavelength and that the distance
between a node and the next antinode is a
quarter of a wavelength. This should allow you
to figure out what kind of standing wave you

can fit in the particular case you are examining.

We see from these formulae that, as the length
of the tube becomes smaller, the allowed
wavelengths also get smaller, which means that
the corresponding frequencies get larger. This is
seen when you put a bottle under a tap and
start to fill it with water. The falling water
excites a standing wave in the bottle whose
length of air column is getting smaller as the
bottle fills. This means that the frequency of
the sound emitted by the bottle becomes high
pitched, as we know from experience.

Example questions

Q1 Erssssssrre oS TTEITTIO
A standing wave is set up on a string kept under
tension 7. What must be done to the tension in

order to double the fundamental frequency of the
wave!

Answer

Since f = :, and the wavelength is fixed in terms
of the length of the string » = 2L, we can double
f by doubling the velocity of the wave, This
means that the tension must increase by 4,

()2 IS TR IR T ST SR =i
What is the ratio of the irequencies of the
iundamental to the second harmonic for a
standing wave set up on a string, both ends of
which are kept fixed?

Answer

The frequencies are

r}.=i and f,=—
hence
b _1
i 2

A tube has one end open and the other closed.
What is the ratio of the wavelengths of the
fundamental to the second harmonic?

Answer

The fundamental and second harmonic have
wavelengths

4L
ia=4L and i = —
3
hence
Ag

Q4 T N e PP YT T T
A standing wave is set up in a tube with both
ends open. The frequency of the fundamental is
300 Hz. What is the length of the tube? Take the
speed of sound to be 340 m s ™',

Answer

The wavelength is

The fundamental’s wavelength is equal to 2¢ and
so L =0.57 m,
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Resonance and the speed
of sound

When a vibrating tuning fork is brought near to
the end of a long tube partially filled with water,
a buzzing sound may be heard from the tube.
When that happens, addition of more water in
the tube will ruin the effect. This is an example
of resonance. The tuning fork will excite the air
in the tube and force it to vibrate with a
frequency equal to the tuning fork's frequency.
The amplitude of this standing wave will be
appreciable, though, only if the frequency of the
standing wave that the tube can support is equal
to the tuning fork’s frequency. When these two
frequencies are the same, we hear the buzzing
sound from the tube. Pouring more water in the
tube changes the frequency of the tube and so
the amplitude is now very small - no sound is
heard from the tube.

This actually provides a simple method for
measuring the speed of sound in air. A set of
tuning forks of known frequencies are each
sounded over a column of air in a long tube
partially filled with water. The height of the
column of water is adjusted (by pouring water in
or out) until resonance is obtained (i.e. the tube
emits a sound). The corresponding height of the
air column and the frequency are recorded and
this is repeated with the other tuning forks. The
standing wave inside the tube must have a
wavelength such that & = 4L, where L is the
length of the air column. But 4 = %, where [ is
the corresponding frequency, which equals the
known frequency of the tuning fork. Thus, v,
which is the speed of sound, can be determined
by repeating this procedure for various different
tuning forks and then plotting I versus 1/f.
One must get a straight line with slope v /4.

Supplementary material

This discussion ignores end corrections. End
corrections are necessary in practice because
the standing wave may have a wavelength that
does not salisfy = L but rather £ = | + e,

where e is a constant depending on the diameter
of the tube. In an experiment to measure the
speed of sound by resonance the end correction
must be included.

Resonance is a general phenomenon. It occurs
whenever a system that is capable of oscillation
or vibration is subjected to an external
disturbance with a frequency equal to the
natural frequency of the system itself. In that
case, the system oscillates with a large
amplitude. If the frequencies do not match, the
system still vibrates but the amplitude is very
small. Clearly, resonance can be a dangerous
phenomenon. A system that is set into vibration
by something external and develops large
amplitudes may eventually break or fall apart.
Aeroplane wings, engines, bridges, tall
buildings, etc., must all be protected against
resonance from external vibrations due to
wind, other vibrating objects, etc. Soldiers
always break their step when walking over a
bridge, in case the force that they exert on the
bridge starts uncontrollable oscillations of the
bridge. An earthquake may set a building into
oscillation if the frequency of the longitudinal
wave created by the earthquake is equal to the
natural frequency of vibration of the building.
This frequency is 5, where ¢ is the speed of
sound in the structure of the building and L is
its height. (See Figures 6.12-6.14.)

Figure 6.12 The Tacoma Narrows bridge collapsed
in 1940, a victim of resonant failure,
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wavelength of
fundamental is 2L

a standing wave maode if the frequency of the
earthquake wave matches the natural frequency

Figure 6.13 A building will be made to oscillate in
of oscillation of the building.
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Figure 6.14 The severe earthquake that struck
northern Turkey in August 1999 released vast
amounts of energy. Hundreds of buildings
toppled and tens of thousands of people were
killed.

Questions

1 Describe what is meant by a standing wave.
In what ways does a standing wave differ from
a travelling wave?

2 How is a standing wave formed?

3 In the context of standing waves describe
what is meant by:
(a) node;
(b) antinode.

4 Describe how you would arrange for a string
that is kept under tension, with both ends |

10

11

12

fixed, to vibrate in its second harmonic mode.
Draw the shape of the string when it is
vibrating in its second harmonic mode.

Explain what is meant by resonance and give
two examples where it occurs.

Car drivers occasionally experience a ‘shaking
steering wheel’ when travelling at a particular
speed. The shaking disappears at lower or
higher speeds. Suggest a reason for this
observation,

A string is held under tension, with both ends
fixed, and has a fundamental frequency of
250 Hz. If the tension is doubled, what will
the new frequency of the fundamental

mode be?

A string has both ends fixed. What is the ratio
of the frequencies of the first to the second
harmonic?

The fundamental mode on a string with both

ends fixed is 500 Hz. What will the frequency

become if the tension in the string is increased

by 20%?

The wave velocity of a transverse wave on a

string of length 0.500 m is 225 m s,

(a) What is the fundamental frequency of a
standing wave on this string if both ends
are kept fixed?

(b} While this string is vibrating in the
fundamental harmonic, what is the
wavelength of sound produced in air?

(Take the speed of sound in air to be 330 ms™'.)

Figure 6.15 shows a tube with one end open

and the other closed. Draw the standing wave

representing the third harmonic standing wave
in this tube.

Figure 6.15 For question 11.

A glass tube is closed at one end. The air
column it contains has a length that can be
varied between 0.50 m and 1.50 m. If a
tuning fork of frequency 306 Hz is sounded at
the top of the tube, at which lengths of the air
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13

14

15

16

column would resonance occur? (Take the
speed of sound to be 330 ms™'.)

A glass tube with one end open and the other

closed is used in a resonance experiment to

determine the speed of sound. A tuning fork

of frequency 427 Hz is used and resonance

is observed for air column lengths equal to

17.4 cm and 55.0 cm.

(a) What speed of sound does this experiment
give!

{(b) What is the end correction for this tube?

A tube with both ends open has two

consecutive harmonics of frequency 300 Hz

and 360 Hz.

{a) What is the length of the tube?

{b) What are the harmonics?

(Take the speed of sound to be 330 ms™'.)

A string of length 0.50 m is kept under a tension

of 90.0 N and vibrates in its fundamental mode.

The mass of the string is 3.0 g.

(a) What is the frequency of the sound emitted?
(Take the speed of sound to be 330 ms~'.)

{b) The same string now vibrates in water.
What is the wavelength of the sound
emitted? (Take the speed of sound in water
to be 1500 ms~')

A container of water of length 12 cm is placed

on top of a vibration generator (Figure 6.16).

When the generator is urned on, the water in

the container sloshes back and forth.

® [1 ®

Figure 6.16 For question 16.

When the frequency is adjusted to about

0.75 Hz, the water actually spills out of the

container.

{a) Suggest a reason for this.

(b} Estimate the speed of water waves in the
container.

17 Do the following experiment at home. Take a

styrofoam cup (top diameter approximately

8 cm) and fill it with cold coffee or tea. Now

drag it slowly over a surface that is neither too

smooth nor too rough, for example a kitchen
counter,

{a) Observe and explain what you see on the
surface of the liquid as the speed at which
you drag the cup is varied.

{b) Knowing that the speed of water waves in
the cup is about 15 m s~', estimate the
frequency that makes the water vibrate.

{c) Is this frequency related to the speed of
the cup?

18 Consider a string with both ends fixed.

A standing wave in the second harmaonic

mode is established on the string, as

shown in Figure 6.17. The speed of the wave

is 180m s’

(a) Explain the meaning of wave speed in the
context of standing waves.

{b) Consider the vibrations of two points on
the string, P and Q. The displacement
of point P is given by the equation y =
5.0 cos (45w}, where yis in mm and t
is in seconds. Calculate the length of the
string.

(c) State the phase difference between the
oscillation of point P and that of point Q.
Hence write down the equation giving the
displacement of paint G,

Figure 6.17 For question 18.

19 A sound wave of wavelength 1.7 m passes

through air, where the speed of sound is

330 m s~'. Assume that a molecule of air

has mass 4.8 x 10" kg and that, as a result
of the sound wave, it oscillates with an
amplitude of 4.0 x 107" m. Calculate the
maximum kinetic energy of the molecule due
to its oscillations.
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20 A string with both ends fixed vibrates in the ! (b} The amplitude of oscillation of point P is
third harmonic mode, as shown in Figure 4.0 mm. Explain why the displacement of
6.18. The length of the string is 6.0 m and the point P is given by the equation
speed of the wave is 120 m s™', y = 4.0 cosl60xt), where y is in

millimetres and t is in seconds.

{c) The amplitude of oscillation of points
) and R is 2.0 mm. State the equation
giving the displacement of (i) point Q and
{ii} point R.

{d) Calculate the average speed of (i) point
P and (i) point Q fromto t=0to t = I,
where T is the period of the wave.

{a) Calculate the wavelength of the wave on (e} Calculate the maximum speed of (i) paint
the string. : F and (ii} point C).

Figure 6.18 For question 20.
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In previous chapters, we saw the behaviour of light in the geometrical approximation,
which is when the important phenomena of diffraction and interference are neglected
so that we can treat light propagation along straight lines. This chapter deals in detail
with the problem of single-slit diffraction and the effect of slit width in the interference

pattern.

Objectives

By the end of this chapter you should be able to:

» understand diffraction and draw the diffraction patterns from a rectangular
slit, a sharp edge, a thin tube and a circular aperture;
» appreciate that the first minimum in single-slit diffraction past a slit of

width b is approximately at an angle & = :

» draw the intensity patterns for a single slit of finite width and for two slits of

negligible width;

+ show the effect of slit width on the intensity pattern of two slits.

Diffraction

Diffraction, as we have seen earlier, is the
spreading of a wave as it goes past an obstacle
or through an aperture.

Let us consider a plane wave of wavelength A
propagating toward the right, where an
aperture of size b is waiting. What will the
wavefronts look like after the wave has gone
through the aperture? The answer is not so
straightforward. As we will see, the value of the
wavelength in relation to the aperture size will
be crucial in determining what answer we get.
In the first case let us assume that the
wavelength is very, very small compared with b
(see Figure 7.1).

That part of the wave which is blocked by the
screen does not propagate through and only
that part which is free to go through does so.

If the wave in question is light, this picture says

wavelength small compared with aperiure

no wave here

i

.. 0r here

f,l

Figure 7.1 When the wavelength is small compared
with the size of the opening of the aperture, the
amount of diffraction is negligible.

ﬂ I

that light goes through the opening, so that if
we put a screen beyond the aperture we will see
light on an area of the screen identical to the
opening and darkness around it. Light travels
in straight lines and does not bend as it goes
through the aperture. There is no diffraction.

On the other hand, if the wavelength is
comparable to or bigger than b, the new
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wavefronts are curved and the wave manages
to go around the edges (see Figure 7.2).

wavelength comparable to aperture

the wave is
spreading

B

Figure 7.2 When the wavelength is comparable to
the opening of the aperture, diffraction takes
place.

If we put a screen some distance away from
the aperture, we would see light in places
where we would not expect any, such as points
A and B, for example. This is the phenomenon
of diffraction. It takes place whenever a wave
whose wavelength is comparable to or bigger
than the size of an aperture or an obstacle
attempts to move through or past the aperture
or obstacle. (Note that here ‘comparable to’
means that the wavelength can be a few times
smaller than the aperture size.)

Diffraction explains how we can
hear, but not see, around corners.
For example, a person talking in the
next room can be heard through the
open door because sound diffracts
around the opening of the door; the
wavelength of sound for speech is
roughly the same as the door size.
On the other hand, light does not
diffract around the door since its
wavelength is much smaller than
the door size. @

Other examples of diffraction are
shown in Figures 7.3-7.5.

If the wavelength is much smaller
than the obstacle size, no diffraction
takes place, as seen in Figure 7.4(a).

I
i
A
e

Figure 74 (a) If the wavelength is much smaller
than the obstacle, no diffraction takes place and
a shadow of the object is formed. (b) If the
wavelength is comparable to the obstacle size,
diffraction takes place and the wave appears far
from the object in the region where the shadow
was expected.

v

Figure 7.3 Diffraction also takes place when a
wave moves past an obstacle,

Diffraction does takes place if the wavelength is
comparable to the obstacle size, as seen in
Figure 7.4(h).

Figure 7.5 shows interference patterns due

to (a) a single slit, (b) two slits, (c) a sharp
edge, (d) a circular aperture and (e) a thin
cylindrical tube. Notice the wide central
maximum in (a) and the secondary maxima in
(b). In (c) the pattern consists of bright and
dark strips and in (d) of bright and dark rings.
In (e) notice the presence of a bright fringe
right behind the tube.

v

no wave here

|

J
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sharp edge

(ch

(d)

(el

Figure 7.5 (a) Single-rectangularslit diffraction pattern. (b) Double-slit diffraction
pattern. (c) Sharp-edge diffraction pattern. Note that light extends on the inside of
the sharp edge. (d) Diffraction pattern from a civcular aperture. (e) Diffraction
pattern due to a very thin tube with sharp edges. Note that there is light even

directly behind the tube.

Single-slit diffraction

When a wave of wavelength A falls on an
aperture whose opening size is b, an important
wave phenomenon called diffraction takes
place. As we saw earlier:

» Diffraction is appreciable if the wavelength
is of the same order of magnitude as the
opening or bigger.

izb
Diffraction is negligible, however, if the
wavelength is much smaller than the
opening size.

L&D

To investigate this phenomenon we use Huygens'

principle (see pp. 234-6) and say that every point
on the wavefront that hits the slit will act as a
source of secondary coherent radiation. Then
what we see at a point P on a screen a large

1o screen

Figure 7.6 In the case of finite slit width each
point on the wavefront entering the slit acts as a
source of waves according to Huygens' principle
and so interference will, in general, result on a
screen some distance away.

distance away will be the result of the interference
of the waves arriving at P from each of the points
on the wavefront. Figure 7.6 shows 10 such points
labelled A, Az, Az, Ay, As and By, B, By, B, and Bs.
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We choose the Bs in such a way that they are
symmetrically placed relative to the As.

All these points are on the same wavefront and
therefore are coherent. But, in general, the
wave from A, will travel a different distance in
order to get to P than the wave from B, (see
Figure 7.7). This path difference will, as in our
discussion of interference, result in a phase
difference between these two waves at P.

P

b

u

Figure 7.7 Diagram used to calculate the path
difference. The path difference equals the
distance B,C, . Lines A\P and B,P are
approximately parallel since P is far away. Thus,
triangle A,B,C, is approximately right angled
and angle ByA,C, equals #. The path difference is
the length B,C,.

If the path difference is half a wavelength, the
two waves arrive at P with a 180" phase
difference,so the maxima of one wave match the
minima of the other. The result is destructive
interference, or no wave at P. But remember, we
still have to consider the other points, not just A,
and B;. What about A; and B;? Triangles A;B,C,
and A;B,C; are equal since they are right angled,
that is AyB, = A:B; and (BAC, = £BAC; (see
Figure 7.8). Thus, we see that whatever phase
difference exists at P from A, and B,, the same
will be true for A; and B,, and so on.

Thus, if we get zero wave at P from the first
pair, we will get the same from.the second as

N

B,

Figure 7.8 Triangles A,C,B, and A,C,B; are equal.

well. Continuing this argument we see that all
the points on the wavefront will result in
complete destructive interference if the first
pair results in destructive interference. To get
destructive interference, the path difference must
be a halfintegral multiple of the wavelength. The
path difference between waves arriving at P from
A, and B, is § siné (see Figure 7.6) and so this
means that if

8

2
=hsinf =A

—sin f# =
2

we get a minimum at P. If we split the aperture
into four equal pieces instead of two and repeat
this argument, we will find that the condition
for destructive interference is also

b i

—5in & =
4'aln 5

=hsind =25

p In general, in interference from a single slit
we get destructive interference at points P if

= alididi e

“This equation gives the angle # at which

minima are observed on a screen behind

the aperture of size b on which light of

wavelength 4 falls, Since the angle 8 is

h ﬁil‘l_ 8 =ni
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The maxima of the pattern are approximately
half-way between minima. This equation is very
important in understanding the phenomenon
of diffraction so let us take a closer look.

The first minimum (n = 1) occurs at bsin @ = A.
If the wavelength is comparable to or bigger
than b, appreciable diffraction will take place, as
we said earlier. How do we see this from this
formula? If A = b, then sin # = 1 (i.e. & does not
exist). The wave has spread so much around the
aperture, the central maximum is so wide, that
the first minimum does not exist. (Remember
that diffraction is the spreading of the wave
around the aperture, not necessarily the
existence of interference maxima and minima.)

If now the wavelength is comparable to b, then
again appreciable diffraction takes place and a
number of minima and the intervening maxima
are visible (comparable means that the wavelength
can be a bit less than b). If, on the other hand,
A < b, then from # = } it follows that 4 is
approximately zero. In other words, the wave
goes through the aperture along a straight line
represented by ¢ = 0. There is no wave at any
point P on the screen for which # is not zero.
This means that the passage of the wave leaves
a shadow of the aperture on the screen. There is
no spreading of the wave and hence no
diffraction, as we expected.

The intensity of light observed on a screen some
distance from the slit is shown in Figure 7.9(a) for
the case b = 2 and in Figure 7.9(b) for b = 34
(the vertical units are arbitrary).

i — *
2P 407

-4 L

[a)

(b}

Figure 7.9 The single-slit intensity pattern for (a) a
slit of size b = 24, and (b) a slit of size b = 3.

Note that the narrower slit (a) has a wider
central maximum.

The effect of slit width

At this point it is worth reminding you that in
our previous discussion of the Young two-slit
interference experiment, we never talked about
the size of the slit width, only the separation d of
the two slits entered in the formula. This is
because we assumed that the slit width was much
smaller than the wavelength. As we discussed
above, in this case (A > b) there is no interference
pattern from points within the individual slit. The
wave just spreads past the slit. The interference
pattern we got on the screen in that case was the
interference of the two waves after each had
spread through each slit. Thus, in this limiting
case, il one of the two slits were covered, the
interference pattern would disappear.
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On the other hand, the case of two slits whose The intensity pattern for a single slit of width
widths cannot be so neglected will result in a b = 34 was shown in Figure 7.9(b).

more complicated pattern on the screen. This
pattern will be the combined effect of (a) the
interference pattern from one slit alone and
(b) the interference from waves coming from

Finally, the intensity pattern for two slits
separated by d = 164 as before, but whose
width is not negligible, b = 34, is shown in

different slits, Let us consider the intensity | Tigure 711,
pattern for two very narrow slits separated by | We have shown the single-slit pattern again,
d = 164 shown in Figure 7.10. | which is in fact the envelope curve for the

two-slit pattern. The position of the maxima is
the same as in the case of the narrow slits but
the effect of the slit width is to modulate the

intensity by the single-slit diffraction pattern.

Missing orders

If the slit width is ignored in a Young-type two-
slit interference pattern, we observe a number of
equally bright maxima, as in Figure 7.10. If the
slit width is not ignored, this intensity pattern
will be modulated by the diffraction effects of
the slits. It sometimes happens that the first

:{J" _,Ijb 6 5 | u:“ 4 diffraction minimum in the one-lit diffraction

Figure 7.10 The twosslit interference intensity pattern coincides with one of the maxima in the
pattern for slits of negligible width separated by two-slit interference pattern. If that happens, the
d = 164 maximum will be reduced to a point of zero

Y. —+ g

-30° -20° -10° 0 10° 20 Rl

Figure 7.11 The modulated two-slit intensity pattern when the slit width is not
negligible. Shown here is the case for b = 34 and d = 164, The heavy curve is the
one-slit diffraction eurve for a slit width of b = 34,
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—40° -2 0 20° 40° Ll

@
40 =20 0 20¢ 40°

Figure 7.12 The fourth maximum in the two-slit pattern is missing because it
coincides with the first diffraction minimum of the one-slit pattern. We can
conclude that d = 4b.

intensity and we then speak of a missing order. 2 Microwaves of wavelength 2.80 cm fall on a
Suppose that the first diffraction minimum slit and the central maximum at a distance of
occurs at an angle §. Then bsing = 1 x i.
Suppose that the nth maximum of the two-slit
pattern coincides with the first diffraction
minimum. Then d sin# = nai. Combining the two
equations we see that

1.0 m from the slit is found to have a hali-
width (i.e. distance from middle of central
maximum to first minimum) of 0.67 m. Find
the width of the slit.

3 The intensity pattern for single-slit diffraction
is shown in Figure 7.13. (The vertical units are

dsing = nx arbitrary.)
X = d — ﬂh
bsing = A !
that is, the slit separation is n times the slit
width where n is the missing order. Figure 7.12
is an example of this where the missing order is |
n=4. |
1 Asingle slit of width 1.50 gm is illuminated = c P
with light of wavelength 500.0 nm. Find the -60° —40°  -20° 0 20° a0° 60°
angular width of the central maximum. Figure 7.13 For question 3.
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{a) Find the width of the slit in terms of the
wavelength used.

(bl On a copy of the diagram, draw the
intensity pattern for two such slits placed
parallel to each other and separated by a
distance equal to 10 wavelengths. How
many interference maxima fall within the
central diffraction maximum?

« B
I40m

Figure 7.14 For question 4,

4 From the information in Figure 7.14, . screen is 0.60 m from the slit and the slit
determine the wavelength used to obtain the | width is 2.30 cm. What kind of wave is maosl
single-slit diffraction pattern shown. The | likely being used?
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Resolution

AHL - Oscillations and waves

SL Option A - Sight and wave phenomena

This short chapter deals in detail with the limits to resolution imposed by diffraction.

Objectives

By the end of this chapter you should be able to:
« understand what is meant by resolution;
» apply the Rayleigh criterion.

The Rayleigh criterion

In the previous chapter, we discussed in some
detail the diffraction of a wave through a slit
of linear size b. One application of diffraction
is in the problem of the resolution of the images
of two objects that are close to each other.

Light from a distant star will, upon passing
through a lens, diffract around the ¢ircular
aperture of the lens. The image of a star is an
extended disc with diffraction rings around it.
Two distant objects that are very close to each
other will, in general, produce diffraction
patterns that will merge with each other, making
it difficult to distinguish the pattern as one
belonging to two separate objects (see Figure 8.1),

04O,

Figure 8.1 Diffraction limits our ability to
distinguish two separate sources. In the first
diagram the diffraction patterns have merged.

Rayleigh suggested that a useful criterion for
deciding whether the two objects can be
resolved is that the central maximum of one of
the sources is formed at the position of the first
minimum in the diffraction pattern of the
other (see Figure 8.2),

40 =20 0 2 40° 0" 807

Figure 8.2 The Rayleigh criterion states that
two sources are just resolved if the central
maximum of the diffraction pattern of one
source falls on the first minimum of the
other.
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Figure 8.3 shows two unresolved and two well-
resolved sources.

Rmﬁ ﬂﬂiﬁé first minimum in the
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Figure 8.3 (a) Two unresolved sources. (b) Two well-
resolved sources.

In Figure 8.4 the two objects are separated by a
distance s and their distance from the observer
is d. Their angular separation # is given by

# =s/d in radians.

*/’/?[/'/.J

Figure 8.4 To see the two objects as distinct we
need a lens that can resolve the angle 8.

Oscillations and waves / SL Option A - Sight and wave phenomena

Example questions

Q] SR M T I TN U s L e AR
The camera of a spy satellite orbiting at 200 km
has a diameter of 35 cm. What is the smallest
distance this camera can resolve on the surface of
the earth? (Assume a wavelength of 500 nm.)

Answer

Using Rayleigh's criterion and a wavelength of
5.0 x 1077 m, we find that the distance s that can
be resolved is given by s = ré where

1.22 x5 %107
0.35
=2 1.74 x 107° rad
= s5=rf
=2x10°%1.74%x 10" m
=034 m

8 ==

()2 pveerss e rsra e I T TVESTISSTIRTES ENIERISENTE
The headlights of a car are 2 m apart. The pupil of
the human eye has a diameter of about 2 mm.
Suppose that light of wavelength 500 nm is being
used. What is the maximum distance at which the
two headlights are seen as distinct?

Answer
The resolution of the eye is
1.22x 5 x 10~

2 % 10-3
23 x 10" rad

6 =z

=r=-
]

2
T 3x10
= 0.67 x 10*
~ 700 m

The car should be no more than this distance
away.

Q3 DTSRRI ST e rTey
The pupil of the human eye has a diameter of
about 2 mm and the distance between the pupil
and the back of the eye (the retina) where the
image is formed is about 20 mm. Suppose the eye
uses light of wavelength 500 nm. Use this
information to estimate the distance between the
receptars in the eye.
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Answer

The angular separation, 8, of lwo objects that
can be resolved is, from the answer to Example
guestion 2 above, 3 = 10" rad. From Figure 8.5
this is also the angular separation between two
receptors on the retina. Thus, the linear
separation of the two receptors must be smaller
than about

[ =r8
=20% 10" % 3x10™
=6x10"m

As we have seen, the Rayleigh criterion states
that two objects are just resolvable as distinct
objects if their angular separation is not
smaller than the angle # given by

A
8= 1.225

In the case of a microscope, the object is placed
a distance from the lens (see Figure 8.6) equal to
the focal length [ of the lens, and so

s=T#8

Then the condition for resclution on the object
becomes

af
smIZEF

In practice, f = b, i.e. these two lengths are of
the same order of magnitude, and this means that

-2}

{In writing down this formula we neglect the
factor of 1.22 because the expression above is

Figure 8.6 The Rayleigh resolution criterion applied
to a microscope used to view a very small object.

only meant to be understood at the level of
orders of magnitude.) This states the very
important general result that:

To resolve a small object of sizes, the
Wdfngthhufhaﬁrmdmﬁeni%

This illustrates, for example, the operating
principle of the electron microscope. To ‘see’, i.e
resolve, a small object of size, say, 0.01 nm,
waves of roughly this wavelength must be used.
This means that visible light cannot be used. On
the other hand, according to de Broglie,
electrons have a wave nature and so they are
used in an electron microscope. If the electrons
are accelerated to, say, 10° V, their kinetic energy
will be E = 10° eV = 1.6 x 1071 ). Using

I s

2m

we find a momentum p of

I

{mot to scale)

r=20 mm

Figure 8.5 The point here is that if the two receptors had a separation larger than 6 pum, the two
images would fall on the same receptor and would then appear as one.
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F=1,.~'2.I'ﬂfk

=v2x91 %109 x 1.6 x 10-"

=171 x 10072 Ns

and hence a de Broglie wavelength of
h

p
663 x 107
T 171 x 1072

=4x 107" m

A

This is small enough to resolve the size of
0.01nm. An extension of this general principle
of resolution therefore implies that, to resolve
the structure of elementary particles, where
separations as small as 107'® m are involved, one
must use a wavelength of this order of magnitude.
If electrons are used, the energy required for the
electron is in excess of 1000 GeV. This means
that particle physics requires accelerators!

Questions

1 Could a telescope with an objective lens of
diameter 20 cm resolve two objects a distance
of 10 km away separated by 1 cm? (Assume
we are using a wavelength of 600 nm.)

2 The headlights of a car are separated by a
distance of 1.4 m. At what distance would these
be resolved as two separate sources by a lens of
diameter 5 cm if a wavelength of 500 nm is
being used? What effect would decreasing the
wavelength used have on the distance you just
found?

3 Assume that the pupil of the human eye has a
diameter of 4.0 mm and receives light of
wavelength 5.0 x 107 m.

(a) Calculate the smallest angular separation
that can be resolved by the eye at this
wavelength.

{b) What is the least distance between
features on the moon (a distance of
3.8 x 10" m away) that can be resolved?

The Jodrell Bank radio telescope has a
diameter of 76 m. Assume that it receives
electromagnetic waves of wavelength 21 cm.
(a) Calculate the smallest angular separation
that can be resolved by this telescope.

{b) Determine whether this telescope can
resolve the two stars of a binary star
systermn that are separated by a distance of
3.6 % 10" m and are 8.8 x 10" m from
earth (assume a wavelength of 21 cm).

The Arecibo radio telescope has a diameter
of 300 m. Assume that it receives
electromagnetic waves of wavelength 8.0 cm.
Determine if this radio telescope will see the
Andromeda galaxy (a distance of 2.5 x 10°
light years away} as a point source of light or
an extended object. Take the diameter of
Andromeda to be 2.2 x 10° light years.

A spacecraft is returning to earth after a long
mission far from earth. At what distance from
earth will an astronaut in the spacecraft first
see the earth and the moon as distinct objects
with a naked eye? Take the separation of the
earth and the moon to be 3.8 = 10° m, and
assume a pupil diameter of 4.5 mm and light
of wavelength 5.5 x 1077 m.

The Hubble Space Telescope has a mirror of

diameter 2.4 m.

(a) Estimate the resolution of the telescope
assuming that it operates at a wavelength
of 5.5 % 1077 m.

(b) Suggest why the Hubble Space Telescope
has an advantage over earth-based
telescopes of similar mirror diameter,
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Polarization
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This chapter intraduces palarization, a property of transverse waves. A wave is polarized
if the displacement of the wave always lies in the same plane. This chapter discusses
how a wave can be polarized and introduces Malus's law for the intensity of light
transmitted through a polarizer. We also discuss Brewster's law and close with a few

applications of polarized light.

Objectives

By the end of this chapter you should be able to:

= explain the meaning of the term polarization;
* understand how light can be polarized;

« state and apply Malus's law;

= state and apply Brewster's law;

» understand the terms optical activity and optically active substances;
outline some applications of polarized light, including the structure and

operation of liquid crystal displays.

What is polarization?

Light (like all other transverse waves) has the
important property of polarization. Before
discussing the case of light, let us look at a
simpler mechanical wave, a wave on a string,
Figure 9.1 shows a string that is made to oscillate
s0 that a transverse wave propagates along the
string. In Figure 9.1(a) the string is always in the
same vertical plane. In Figure 9.1(b) the string is
always in a horizontal plane. The string waves
here are said to be plane polarized because in each
case the string is always in a fixed plane.

Now imagine a vertically polarized string wave.
If an obstacle with a vertical slit is placed in the
path of this wave (see Figure 9.2}, the wave will
simply go through the slit unimpeded. However,
if the obstacle has a horizontal slit, the wave
will be stopped, and no wave will be
transmitted beyond the obstacle.

vertical honizontal

wave on wive on

1 string asiring
() by

Figure 9.1 A string wave that is (a) vertically
polarized and (b) horizontally polarized.

Like all other electromagnetic waves, light is a
transverse wave in which an electric field and a
magnetic field at right angles to each other
propagate along a direction that is normal to
both fields. For the discussion of the

enamvenﬁ
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(a) ()

Figure 9.2 A vertical string wave passes through a
vertical slit (a) . . . but not through a horizontal
slit (b).

polarization of light, it is sufficient to
concentrate only on the electric field in the
electromagnetic wave and to ignore the
magnetic field.

An electromagnetic wave is said to be plane
polarized if the electric field always lies in the
same plane, as the wave propagates. Thus in
Figure 9.3(a) the wave is plane polarized, but in
Figure 9.3(b) the wave is unpolarized. In both
cases the wave is propagating along the direction
into the plane of the page.

() (h)

Figure 9.3 Electric field vectors of (a) polarized
and (b) unpolarized light. Both waves are
propagating into the plane of the page.

Most of the light around us, for example light
from the sun or a light bulb, is unpolarized
light. Unpolarized light can be polarized by
letting it go through a polarizer. A polarizer is
a sheet of material with a molecular structure
that only allows a specific orientation of the
electric field to go through (see Figure 9.4). The
most common polarizer is a plastic called
Polaroid invented by Edwin Land, a 19-year-old
undergraduate at Harvard, in 1928. Thus a sheet
of Polaroid with a vertical transmission axis

polarized light

line indicates
unpolarized light E:::?::m

Figure 9.4 This polarizer only allows components
of electric fields parallel to the vertical
transmission axis to go through. Vertically
polarized light is transmitted through this
polarizer.

(this means only vertical electric fields can go
through) placed in the path of unpolarized
light will transmit only vertically polarized
light. In diagrams, the transmission axis of the
polarizer is indicated with a line,

Malus’s law

Thus, consider an electromagnetic wave whose
electric field Ep makes an angle ¢ with the
transmission axis of a polarizer. We may resolve
the electric field into a component along the
transmission axis and a component at right
angles to it. Only the component along the axis
will go through (see Figure 9.5),

polarizer with

this : vertical
component is I rANSISSion axis
transmitted r [

this component

is blocked

Figure 9.5 This polarizer has a vertical
transmission axis. Therefore, only the
component of the electric field along the
vertical axis will be transmitted,
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This component of the electric field along the
transmission axis is

E=Eycosd

The transmitted intensity [ is proportional to
the square of the electric field. So we have that

I=I,cos'@

where I, is the incident intensity. This is Malus's
law, named after the Frenchman Etienne Malus,
who studied this effect in 1808. The polarizer
reduces the intensity of the transmitted light.
We see that when the electric field is along the
transmission axis (¢ = 0) then I - Iy, and when
the electric field is at right angles to the
transmission axis (¢ = 90°) then [ = 0.

Example question

OM: - iiiiied.iaiciibrisiabiiziidiibiihadtiansnal
Vertically polarized light of intensity Iy is incident
on a polarizer that has its transmission axis at

! = 30° to the vertical. The transmitted light is
then incident on a second polarizer whose axis is
at & = 60" to the vertical. Calculate the factor by
which the transmitted intensity is reduced.

Answer

After passing through the first polarizer the
intensity of light is

35

4

The second polarizer has its transmission axis at
# = 30 to the first polarizer, and so the final
transmitted light has intensity

I=1I,cos' 8 = [ cos’ 30" =

f:a—fﬂﬂﬂﬁ

The intensity is thus reduced by a factor of 7.

Polarizers and gqalysers

A polarizer can be used to produce polarized
light. It can also be used to determine if light is
polarized. A polarizer used for this purpose is
called an analyser. Unpolarized light passing
through a polarizer (analyser) will have its
intensity reduced by the same amount (by 50% in
fact - see below) no matter what the orientation

of the polarizer (analyser). Polarized light, on the
other hand, will have its intensity reduced by an
amount that depends on the orientation of the
polarizer (analyser).

When unpolarized light is incident on a
polarizer, the transmitted light will have its
intensity reduced (since part of the light will be
blocked by the polarizer). We can calculate the
factor by which the intensity is reduced as
follows. We think of the incident unpolarized
light as having two electric fields, of equal
magnitude, in directions along and normal to
the transmission axis of the polarizer. The
incident intensity is then proportional to
E2+E2?=2E? where E is the magnitude of
either the vertical or the horizontal electric
field component. One of these components will
be blocked, and so the transmitted intensity will
be proportional to just F . Thus the intensity is
reduced by a factor of 2 or 50% (Figure 9.6).

transmitted
light
intensity fp/2

unpolarized light
intensity Iy

Figure 9.6 Unpolarized light has its intensity
reduced by a factor of 2 after passing through a
polarizer (analyser].

lementary material

For the more mathematically minded, the
transmitted intensity will be, using Malus's law,
I = Iy cos’ . But each component of the
incident unpolarized light will make a different
angle & with the transmission axis. Since we
have a very large number of randomly chosen
angles @, we must find the average value of
cosd. This is just 3, and so the transmitted
intensity is half of the incident intensity.
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- Polarization by reflection

When two polarizers are placed with their
transmission axes at right angles to each other,
no light emerges from the second polarizer
(Figure 9.7).

transmitted

light

Polarized light can be obtained not only by
passing light through a polarizer but also by
reflection. When unpolarized
nolight here  light reflects off a non-metallic

B - surface, the reflected ray is
1 partially polarized (Figure 9.8).

intensity fo/2

first polarizer

unpolarized light
intensity £y
Figure 9.7 No light gets transmitted by an
arrangement of two polarizers at right angles
to each other.

plane of incidence

partially
polarized
reflected ray

unpolarized
incident ray

/ reflecting surface

(a)

plane of incidence

(b} reflecting surface

Figure 9.8 Partial polarization by reflection,
(a) There is a small electric field component
in the plane of incidence. (b) There is a larger
electric field component in the plane parallel
to the reflecting surface, as shown in this edge
view.

eeesl The "glare’” from reflections off

the sea is partially polarized, and

Sy can be reduced by wearing
second polarizer

Polaroid sunglasses (which have
polarizing plastic lenses). The
plane of polarization is parallel to
the reflecting surface. Partially
polarized light in this case means
that the reflected light has
various components of electric
field of unequal magnitude. The
component with the greatest
magnitude is found in the plane
parallel to the surface, and so the
light is said to be partially
polarized in this plane.

The two diagrams in Figure 9.8 can be combined
into one, as shown in Figure 9.9. In this
diagram, a dot indicates an electric field into or
out of the page, and a double-headed arrow an
electric field along the plane of incidence.

The degree to which the reflected ray is
polarized depends on the angle of incidence.
Consider an unpolarized light ray incident

normal

: partially
polarized
unpolanzed reflected ray
incident ray

|
!
1
1
1
1
1
1
1
1

reflecting surface
Figure 9.9 A double-headed arrow represents an
electric field in the plane of incidence. A dot
represents an electric field into or out of the
page (i.e. polarizations parallel to the reflecting
surface).
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on a partly reflecting non-metallic surface
{which is transparent to some extent, so that
some light is transmitted). There exists a
particular angle of incidence, called the
polarizing angle or Brewster angle, for which
the reflected ray is 100% polarized along a
plane parallel to the reflecting surface (see
Figure 9.10).

completely
unpolarized polarized
o normal reflected ray
incident ray

refractive
index, n,

partly reflecting surface
refractive
index, fny

partially polarized
refracted ray

Figure 9.10 When the angle of incidence equals
the Brewster angle (polarizing angle), the
reflected ray is totally polarized in a plane
parallel to the reflecting surface. Notice that the
refracted ray is partially polarized.

In 1812, Sir David Brewster (who also invented
the kaleidoscope) found experimentally that,
when the reflected ray is 100% polarized, the
angle between the reflected ray and the refracted ray
is 90°.

The Brewster angle &y is determined by the
refractive indices of the two media separated by
the partly reflecting surface. Let the refractive
index in the medium from which the ray is
incident be ny and the refractive index of the
medium the ray is entering be n2. Then, the
angle of incidence is #3 and the angle of
refraction is 90° — fg. Applying Snell’s law

we find:

m sindy = ny sinf90° — #)
= CGSHG

Nz
= fandy = —
m

» Brewster’s law states that
: - 2
tanf = =
ty =

In particular, if the ray is incident from air
(n; = 1), then tan 63 = na.

Example question

Q2 ceE=mmrrrovsasestltess =S85 IINITNTIE
Calculate the Brewster angle for light incident on

the surface of water. The refractive index of water
is 1.33.

Answer

Applying tan#y =  we find

1.33 . :
= — = mllh B =531
tan fy 100 = fly = lan 33 =53

The angle of refraction & for an angle of incidence
equal to the Brewster angle #y is expected to be
90° — Ay = 36.9°. Indeed, from Snell’s law

m sinfy = msiné,

1.00 % 5in53.1° = 1.33 x sin#,

sinf, = 0.601

#, =369

Optical activity

Consider two polarizers (analysers) whose
transmission axes are at right angles to each
other, as shown in Figure 9.11. No light is
expected to be transmitted through the second
polarizer {analyser). However, if we place certain
sugar solutions between the two polarizers
(analysers), light does get transmitted.

This is because the sugar solution has rotated
the plane of polarization of the light entering
it, so that this light, entering the second
polarizer (analyser), has a component of electric
field along the second transmission axis.

» The rotation of the plane of polarization is

called optical activity and materials showing
this phenomenon are said to be optically active. -
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rotated
plane of
polarization
polarized
transmitted

unpolarized
incident ray

Figure 9.11 No light would normally pass through the two polarizers at

Practical

— nee applications of

el polarization

Stress analysis

It has been discovered (by
Sir David Brewster in 1816)
that certain materials that
are not normally optically
active become so if
subjected to stresses. The
degree to which the
substance becomes optically
active is proportional to the
stress. A complicated

right angles to each other. The presence of the sugar solution rotates the pattern will be seen when a

plane of polarization, so that light does get through.

The phenomenon of optical activity was first
studied by the French physicist Dominique
Arago in 1811. The phenomenon is exhibited by
very many substances, such as organic
compounds, notably sugar solutions, tartaric
acid and turpentine, as well as many
substances in crystal form, such as quartz. The
angle by which the plane of polarization
rotates depends on the distance travelled
within the material and the wavelength of
light used. In quartz, the angle rotates by
approximately 22° for every millimetre
travelled by yellow light. It is an interesting
fact that some substances will rotate the plane
of polarization clockwise (as we face the source
of light) and others in an anticlockwise sense.
This has fascinating applications in biology
and biochemistry.

In the simple arrangement of Figure 9.11, the
angle by which the plane of polarization
rotates can easily be measured simply by
rotating the second polarizer (analyser) until
no light gets transmitted. The angle by which
the polarizer (analyser) must be turned is equal
to the angle of rotation by the optically active
substance.

piece of plastic, under

stress, is placed in between

two polarizers at right
angles to each other (Figure 9.12). Examination of
the pattern reveals information about how the
stress varies in the material. You can sometimes
see patterns of coloured light on the windshield
of a car if the glass has not been properly
installed and is under stress.

Figure 9.12 Plastic under stress,
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Measuring solution concentrations

The amount of rotation of the plane of
polarization in a sugar solution depends on the
concentration of the solution. An early
application of polarization has been to measure
concentrations in solutions by measuring the
angle of rotation of the polarization plane.

Liquid crystal displays

A more modern application is in liquid crystal
displays (LCDs), These can be seen on
calculators, watches and the elegant, thin, flat
computer and TV screens available today.

An LCD consists of a surface of tiny rectangles
called pixels (picture elements). Each pixel has
liquid crystals in between two glass plates. The
liquid crystals are relatively long, thin
molecules that attract each other rather
weakly. The first glass plate has very thin (the
order of magnitude is 1 nm) slits or scratches
along its surface so that the long, rod-like
molecules align themselves with the slits. The
other glass plate has similar slits but is
rotated by 90° with respect to the first. Thus if
the molecules next to the first glass plate are,
say, vertical, those in contact with the other
plate will be horizontal. The molecules in
between will therefore, because of the forces
between them, slowly change orientation

from vertical to horizontal (see Figure 9.13).

Figure 9.13 The liquid crystal molecules are long
and attract each other weakly. Here they form
a line that gradually twists as we move into
the plane of the page. The orientation of
the molecules eventually becomes horizontal
at the back plate.

Suppose now that a polarizer with its axis
vertical is placed in front of the top glass plate.
The transmitted light will be vertically
polarized. As the light moves from molecule to

molecule, its plane of polarization changes so as
to be aligned with the orientation of the
molecules. By the time the light reaches the
back plate, the plane of polarization has rotated
by 90°, If a second polarizer is placed behind the
back plate with an axis of transmission at 90°
with respect to the first polarizer, the light will
simply go through and the pixel will be bright.

However, if a potential difference is established
between the two glass plates, the molecules will
tend to align their long axes with the electric
field. The light reaching the back polarizer will
therefore not be able to go through since it will
still be vertically polarized. The pixel will then
be dark (Figure 9.14).

Figure 9.14 The number 7 on a calculator LCD is
formed from dark pixels to which a voltage has
been applied. The rest of the pixels are bright.

The idea, then, is to apply a voltage to certain
pixels so they will appear black against the
bright background of those pixels where no
voltage is applied. The background can be made
to look bright by placing a mirror there to
reflect the light that went through the bottom
polarizer (Figure 9.15).

lower polarzer
mirror

Figure 9.15 In the absence of a voltage between
the plates, the light has its plane of polarization
rotated, so it can transmit through the lower
polarizer, With a voltage, the light is blocked,
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Colour can be introduced into LCDs by using
green, red and blue filters on sub-pixels.
Depending on the relative brightness of the
individual sub-pixels, various other colours can
be perceived. Computer and TV LCD screens are
substantially more sophisticated than the
description given above, but the basic principle
is the same.

Questions

1 (a) State what is meant by polarized light.
(b) State two methods by which light can be
polarized.

2 Explain why only transverse waves can be
polarized.

3 Light is incident on an analyser. The
transmitted intensity is measured as the
orientation of the analyser is changed. In each
of the following three outcomes, determine
whether the incident light is polarized,
partially polarized or completely unpolarized,
explaining your answers.
fa) The intensity of the transmitted light is the

same no matter what the orientation of the
analyser,

{b) The intensity of the transmitted light varies
depending on the orientation of the
analyser. At a particular orientation, the
transmitted intensity is zero,

{c) The transmitted intensity varies as the
orientation varies, but it never becomes
zero.

4 (a) State Malus's law.
{b) Polarized light is incident on a polarizer
whose transmission axis makes an angle of
25 with the direction of the electric field
of the incident light. Calculate the fraction
of the incident light intensity that gets
transmitted through the polarizer.

5 Polarized light is incident on a polarizer whose
transmission axis makes an angle 6 with the
direction of the electric field of the incident
light. Sketch a graph to show the variation with
angle & of the transmitted intensity of light.

6 Unpolarized light of intensity I, is incident on
a polarizer. Calculate, in terms of I,, the

10
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12

13

intensity of light transmitted through the
polarizer.

Unpolarized light of intensity I, is incident on
a polarizer. The transmitted light is incident on
a second polarizer whose transmission axis is
at 60° to that of the first, Calculate, in terms of
Is, the intensity of light transmitted through the
second polarizer.

Unpolarized light of intensity I, is incident on
a polarizer. A number of other polarizers will |
be placed in line with the first so that the final
transmitted intensity is -{",3 If each polarizer
has its transmission axis rotated by 10° with
respect to the previous one, how many

additional polarizers are required?

Light is incident on two analysers whose
transmission axes are at right angles to each
other. No light gets transmitted. Determine
whether it can be deduced if the incident light
is polarized or not.

Unpolarized light is incident on two polarizers
whose transmission axes are parallel to each
other. Calculate the angle by which one of
them must be rotated so that the transmitted
intensity is half of the intensity incident on the
second polarizer.

Unpolarized light is incident on two

polarizers. The angle between the transmission

axes of the two polarizers is 50°. What fraction
of the incident intensity gets transmitted?

Two polarizers have their transmission axes at

right angles to each other.

(a) Explain why no light will get transmitted
through the secand polarizer.

(b) A third polarizer is inserted in between the
first two. Its transmission axis is at 45 to
the other two. Determine whether any
light will be transmitted by this
arrangement of three polarizers.

{c) If the third polarizer were placed in front
of the first rather than in between the two,
would your answer to (b) change? |

{a} State what is meant by the term Brewster
angle (polarizing angle).

{b) Calculate the Brewster (polarizing) angle
for light incident on a liquid of refractive
index 1.40.
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(e} Calculate the angle of refraction for a ray
of light incident on the liquid with an
angle of incidence equal to the value you
found in (b).

Calculate the Brewster (polarizing) angle for
light that is

{a) incident on a water-air surface from air;
(b} incident on a water-air surface from water.
Take the refractive index for water to be 1.33.
A fisherman is fishing in a lake. Explain why it
would be easier for him to see fish in the lake
if he was wearing Polaroid sunglasses.
Describe the advantage of Polaroid over
ordinary sunglasses.

You stand next to a lake on a bright morning
with one sheel of Polaroid glass. You don't
know the orientation of its transmission axis.

Suggest how you can determine it. (You may
not use other Polaroid sheets with known
transmission axes.)

18 State what is meant by
{a) optical activity;

(b} an optically active substance.

19 State two factors that affect the angle of
rotation of the plane of polarization by an
optically active substance.

20 Plan an experiment that will allow you to
measure the concentration of a sugar solution.
What do you need to have? What
measurements must you make? How will the
concentration of an unknown sugar solution
be deduced?

21 State practical applications of polarization.

22 Qutline the operation of liquid crystal displays.



Electric charge

Electricity is the study of electric charge, of which there are two kinds: positive and
negative. Electric charge is a quanfity that is conserved; like total energy, electric charge
cannot be created or destroyed. It is believed that the total charge of the universe is
zero - there is exactly as much positive charge as there is negative. Another important
property of electric charge is that it is quantized, which means the charge on a body is
always an integral multiple of a basic unit. Basic investigations into the nature and
interactions of electric charge were carried oul in the 1780s by Charles Coulomb, who
discovered the law for the force between electric charges. Ingenious experiments in
electrostatic induction and many other aspects of electricity were performed by Michael

Faraday in the nineteenth century.

 Objectives

By the end of this chapter you should be able to:

| = appreciate that there is a force between electric charges and that vector
! methods must be used to find the net force on a given charge;
| = describe the methods of charging by friction and electrostatic induction and

outline their differences;
= understand the use of the electroscope;

| = understand that charge resides on the outside surface of a conductor -

the net charge inside a conductor is zero;

* use the formula for the electric force between point charges (Coulomb’s law)
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Properties of electric charge

Negative charge resides on particles called
electrons (and on many others - but we will
only deal with electrons here). Positive charge
resides on protons (and others), which exist in
the nuclei of atoms. Electrons are much lighter
than nuclei and so it is much easier for
electrons to move than nuclei. This means that
in solid bodies the motion of electric charge is
brought about by the motion of electrons, but
in liquids and especially in gases positive ions

can also transport charge. As we will see later,
the electron carries the smallest unit of electric
charge. (Quarks, particles found in protons and
neutrons, carry charges that are 1/3 or 2/3 of
the electron charge. These particles cannot be
observed as free particles so the electron can
still be thought of as the carrier of the smallest
unit of charge.) Electric charge is measured in a
unit called the coulomb (C), and the electron's
charge is (negative) 1.6 x 107" C. Materials can
be classified into two large classes, The first
class is conductors, which are materials that
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contain many free electrons inside them (free
electrons are those that do not belong to one
particular atom). The second class is insulators,
which do not have many such free electrons.
This means that in an electric field (explained
later) the free electrons of a conductor will
begin to move parallel to the electric field
whereas no motion takes place in an insulator.
This distinction between conductors and
insulators is not completely clearcut. There also
exist materials called semiconductors, which have
intermediate properties.
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Example question

Q ORI LSS IR SR IET 5
Two separated, identical conducting spheres are
charged with charges of 4 wC and —12 uC,
respectively. If the spheres are allowed to touch
and then separated again, what will be the charge
on each sphere?

Answer

The net charge on the two spheres is —8 uC.
When the spheres are allowed to touch they will
end up with the same charge since they are
identical. When they separate, each will therefore
have a charge of —4 uC.

The electric force

Simple experiments allow us to deduce that
there is a force between electric charges. This is
the electric force. The details of this force were
discovered by Coulomb and Henry Cavendish
and are presented later in this chapter. For our
purposes in this section it will be sufficient to
know that the force is attractive between
charges of opposite sign and repulsive for
charges of similar sign.

Charging by friction

When a glass rod is rubbed with silk, it will
develop a positive charge. This is because
frictional forces between the silk and the glass
remove electrons from the glass rod and deposit
them on the silk. This method is called charging
by friction.

Charging by induction

Suppose that a charged rod is brought near to,
but does not touch, a conductor that rests on
an insulating stand. Let us assume that the
charge on the rod is negative. Then, electrons
in the conductor nearest the charged rod

will be repelled towards the other side of

the conductor. This means that the side of
the conductor nearest the rod will have a
positive charge and the side furthest from it a
negative charge. Note that since the conductor
was originally electrically neutral, it remains
so: the negative and positive charges on the
sides of the conductor are equal. This is
illustrated in Figure 1.1.

Figure 1.1 A negatively charged rod brought near
to an insulated conductor forces electrons in
the conductor to the side furthest from the rod.

Now imagine that, with the charged rod still
nearby, you touch the conductor with your
finger. What happens is that the electrons will
flow to the earth through your body, leaving
the conductor with a surplus of positive net
charge (see Figure 1.2). If the charged rod is now
removed, this positive charge will distribute
itsell on the surface of the conductor and we
are left with a charged conductor. This method
of charging is called electrostatic induction. We
have induced charge on a body without actually
touching that body with a charged object.
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electrons

Figure 1.2 If the conductor is earthed, electrons
from the conductor flow into the earth, leaving
the conductor positively charged.

The induced charge in this case was positive,
which is opposite to the charge of the charging body.
This is always the case. Suppose, for example,
that the external charge was positive. Then
electrons would move towards this external
charge, leaving a positive charge behind. By
touching the conductor, we allow electrons from
the earth to move up to the conductor and
neutralize this positive charge, leaving the
conductor with a net negative charge. You may
wonder what determines which way the
electrons will move. (In our example here,
electrons moved toward the earth the first time,
and on to the body from the earth the second

time). Electrons always move in a direction
that will increase their potential. The
concept of a potential is something we will
meet later and, when we do, this point will
be clarified.

Here is another example of electrostatic

induction. A charged body is brought near
to two touching conducting spheres, each
resting on insulating stands, as shown on the
left of Figure 1.3.

If the external charge is negative, then
electrons in the left sphere will be pushed
away, leaving a positive charge on the left
sphere. If we now separate the two spheres, as
on the right of Figure 1.3, we will find that the
left sphere has a net positive charge while the
right sphere has a net negative charge. Again,
the amount of positive charge on one body
equals the amount of negative charge on the
other, as required by the law of conservation of
charge.

The electroscope

The electroscope is a simple and useful device

for investigating electrostatic properties. A
metallic rod with a

= metallic sphere on the
I:_J o O . top end is inserted
) through a piece of
plastic into a glass cage

Figure 1.3 A negatively charged rod brought near
two touching conductors will induce equal and
opposite charges when the conductors are
separated (in the presence of the rod).

2 d

A——— insulator

(the cage may also be
conducting, in which
case it is earthed). The
lower end of the rod has
a strip of aluminium foil
attached to it so it can
move (in the original
instruments a gold leaf

fioil can
move | |_ +— plass cage

was used instead). Figure
1.4 illustrates how an
electroscope is used.

When an electric charge
is placed near to (but not

Figure 1.4 A negatively charged rod placed near the
ball of the electroscope forces electrons from the
ball down to the foil, causing it to diverge.

touching) the ball, the
foil diverges. Let us
assume that the charge is
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negative, This negative charge pushes electrons
away from the ball. These electrons collect at
the lower end of the rod and on the foil, and so
the repulsive electric force between the similar
charges causes the foil to diverge. (Note: If the
cage had been made of a conducting material, a
positive charge would be induced on the inside
surface of the cage.)

The metal ball of the electroscope is thus lefi
with a positive charge, Note that the net charge
on the electroscope is still zero (conservation of
charge). If we remove the external charge, the
electrons will move back up to the ball, cancel
the positive charge there and the foil will
collapse completely,

If, when the foil is diverged, we keep the
external charge nearby and then touch the ball
of the electroscope, the foil will again collapse
(Figure 1.5a). What happens is that the electrons
from the foil and the lower end of the
electroscope flow to the earth, leaving the
electroscope with a net positive charge. It is
important to observe that even though the electroscope
is now charged, the foil is collapsed. Therefore, the
electroscope does not measure the amount of
charge on it. Rather, it measures its electric
potential, relative to the zero potential of the
earth. The concept of potential will be
introduced in the next chapter. When the
electroscope is connected to the earth, it has

+ 3 - i
4

+
+'+

the earth's potential (i.e. zero) and so the foil is
collapsed.

Why did the electrons move to the earth? This
is because electrons always tend to move (o a
place of higher potential. The earth is at zero
potential whereas the electrons on the lower
end of the rod and the aluminium leaf are at
some negative potential. Thus, by moving to the
earth, the electrons increase their potential.

After earthing the electroscope, the rod can be
moved away. The electroscope foil again
diverges and stays raised (Figure 1.5b). This is
because now there is a positive charge
everywhere in the electroscope and so the foil is
pushed away from the electroscope rod.
Equivalently, the electroscope is now at a
positive potential, higher than the potential of
the earth. Note that the original external
charge was negative. Charging the electroscope
in this way always results in a charge opposite
to the external one. It is another example of
electrostatic induction.

Actually, we can test the sign of the charge of a
charged electroscope in the following way.
Suppose that we have charged our electroscope
with an external negative charge as described
above. Now bring the negative external charge
close to the ball of the electroscope again. This
negative charge will push electrons towards the
lower end of the rod and the aluminium leaf.
But these already have positive charge on
them. The arrival of these extra electrons
will reduce the amount of positive charge
on the rod and leaf and will therefore
cause the leaf to diverge less. On the
other hand, if we bring a positive charge
close to this positively charged
electroscope, then electrons will be
artracted to the top, leaving the lower end

(a) (b

Figure 1.5 If the electroscope is earthed (a) and
the rod then removed (b], the electroscope stays
positively charged. A positively charged rod
would result in a negatively charged
electroscope. -

of the rod and the leaf even more
positive, thus causing the leaf to diverge
even further. Thus, the general rule for
testing the sign of an unknown charge is
to first charge the electroscope with a
known charge. (You need that much to
begin with.) Then bring the unknown
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charge near to the ball of the electroscope. If
the leaf diverges more, the unknown charge is
of the same sign as the charge on the
electroscope (which, remember, is opposite to
the external charge that charged it). If the leaf
collapses, then the unknown charge is opposite
to that of the electroscope. (See, however, the
first question at the end of the chapter.)

Electrostatic experiments

In static electricity, the charge that is deposited
on a conductor always stays on the outside
surface of the conductor. The net charge inside
any conductor is zero. This amazing result was
deduced experimentally by Benjamin Franklin,
and later by Michael Faraday, in the following
simple but ingenious experiment (see Figure
1.6). A metal sphere, on which an amount of

e
- o

EReet

=

.5".._"

e

i gt g I ) regemr P ey &

IS S e e SUF SR |
Figure 1.6 A positively charged sphere is lowered
into a conducting bucket. Negative charge is
induced in the interior of the bucket and an
equal amount of positive charge is induced on

the outside.

fa)

charge was placed, was lowered into an
ordinary metal bucket. The outside of the
bucket was connected to an electroscope. With
the sphere inside the bucket, the electroscope
leaf diverged.

The charge on the sphere (assumed positive)
attracted electrons to the inside surface of the
bucket, leaving the outside surface of the
bucket (and hence also the electroscope) with a
positive charge, which caused the leaf to
diverge. The sphere was then allowed to move
inside the bucket but the amount of divergence
of the electroscope leaf never changed. The
sphere was then allowed to touch the inside of
the bucket (Figure 1.7a). It was then taken out
(Figure 1.7b) and connected to a second
electroscope (Figure 1.7¢).

The second electroscope’s leaf did not diverge,
indicating that the sphere was not charged:
the sphere’s positive charge was cancelled by
the negative charge of the inside of the bucket.
But the charge on the outside of the bucket
did not change, since the leaf of the first
electroscope did not change its divergence.
Thus, the amount of charge on the sphere
must have been exactly equal and opposite

to the charge on the inside of the bucket. The
amount of net charge inside the bucket was thus
zero all along.

Figure 1.7 If the sphere is allowed to touch the interior of the bucket, its positive charge
is completely cancelled by the negative charge in the bucket's interior. The sphere is
completely neutral, as can be checked by connecting it to another electroscope.




5.1 Electric charge 285

Coulomb’s law for the electric
force

The electric force between two electric charges,
Q, and Q;, was investigated by Coulomb and,
independently, by Cavendish. They discovered
that this force is inversely proportional to the
square of the separation of the charges and is
proportional to the product of the two charges.
It is attractive for opposite-sign charges and
repulsive for similarsign charges.
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Figure 1.8 The force between two point electric
charges is given by Coulomb’s law, Shown here
is the case of opposite charges.

We may call the factor ﬁ simply k, so that
Coulomb’s law reads

2,Q;

F=k P,

The numerical value of the factor ;,n'—:u orkis
8.99 % 10" N m* C* (we will often approximate
the 8.99 to 9). The constant &, is called the
electric permittivity of a vacuum and

go = 8.85 % 107" C* N m 2 The index zero in
£p signifies that we are considering the two
charges to be in a vacuum. If the charges are in
a medium, such as plastic or water, then we
must use the value of £ appropriate to that
medium in the formula above. Air has roughly
the same value of £ as a vacuum. Note that this
law is very similar to Newton’s law of
gravitation. Both forces are proportional to

products of masses or charges and both are
inversely proportional to the square of the
separation. This means that many problems

in electricity have the same solution as
corresponding problems in gravitation; the big
difference is, of course, that there are two kinds
of electric charge but only one kind of mass.
Also, the gravitational force is always attractive
whereas the electrical force can be either
attractive or repulsive.

Example questions

()? P TR S R R T
Two charges, ¢, = 4 pC and ¢ = 6 uC, are placed
along a straight line separated by a distance of

2 cm. Find the force exerted on each charge.

Answer

This is a straightforward application of the formula

F= q_ru%'{-l We find that

F:‘Bxlﬂ"xdrxﬁxTD“fN
4 =104

= 540 N

This is the force that g, exerts on g, and vice-
versa.

(}3 v T IR TR M B R R
At what distance from g, of example question 2

would a third positive charge experience no net
forcet?

Answer

Let that distance be x. A positive charge Q at that
point would experience a force from g, equal to
Fi=7-%2anda ff}rce in the opposite direction

from g, equal to F; =

—h,, where d = 2 cm

dxep (o=

is the distance between g, and g, (see Figure 1.9),

4 d b
F, @ F
g B—4+—0—»—— o g,
e
r
Figure 1.9.

Charge @ will experience no net force when
Fi = F;, 50

1 EF:Q 1 q, 2

e, X e, (d — x)°
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that is (substituting g, = 4 and g, = 6)

4(d- x)" = 6x
= x4+ 4dx=2d"=0

= x = —2d + +/4d? 4 2d?

= —2d+ dvb

The two values of x are x = 0.90 em and
x = —8.90cm. The second value is meaningless,
50 x = 0.90 cm.

()4 s T T M NI LI ET T I AN
Three charges g, = 2 uC, g, = 2 uC and

g, = —3 uC are at the vertices of an equilateral
triangle, of side 3 cm. Find the net force on g,.

Answer

q, experiences a force F, from g, and a force F;
from q,. Finding the magnitudes of F, and F, is
easy: F, = 40N and F;, = 60 N. To find the net
force (see Figure 1.10) we take horizontal and
vertical components of the forces,

Figure 1.10.

Then

-FJ‘ = F__I- CO% ﬁﬂ'
= 20N

F_r.. = F; sin 60"
= 34,64 N

Fy. = Fycos 6l
= 30N

F,, = Fysin 60°
=51.96N

Thus, the net force in the x-direction is 50 N and
that in the y-direction 17.32 N-down. The

magnitude of the net force is therefore 52.9 N
making an angle of 19.1" with the horizontal, as
shown on the right of Figure 1.10.

Q5 177807 FFEIEEET I TITI VSIS AE L LITIYSSEETTREs
Two equal charges g are suspended from strings as

shown in Figure 1.11. Show that tan & = .

igEr

Teosl

Tsind

mg

Figure 1.11.

Answer
Equilibrium demands that
Tcosd = mg

_ mg
cos A

and that
Tsind =F

= F= ﬂsirhf.il
cos

= mg tant

F
= tand=—
mg

The electric force F is given by Coulomb's law as
q’
F= kr_z

and so

)

kg
mgr?

tanf =

() eSS TS L AL TS g T
Two identical conducting spheres are kept a
certain distance r apart. One sphere has a positive
charge @ on its surface and the other is neutral.
The spheres are allowed to touch and are then
separated. Write down an expression for the
electric force between the spheres. One of the
spheres is discharged. The spheres are then
allowed to touch and then are separated again.
Write down an expression for the electric force
between the spheres now.
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Answer

After louching each sphere has a charge /2 and
so the force is

p 2
I

;
ok
e,

= T4r?

After discharging one of the spheres and then
allowing the spheres to touch again, the
charge on each sphere will be Q/4. The force
is then

= k{QH]'{QH}
r

Q.I'

1672

F

=k

that is, one-quarter of the original force.

e
=]
=
[y

=20 pC 3.0uC

(;.h :

- =
O o

Questions

1 A positively charged electroscope is found to
diverge even further when a body of unknown
charge is brought near to (but does not touch)
the electroscope. What sign does this charge
have? A second body brought into the vicinity
of the electroscope makes the electroscope
leaf diverge less. If this body is known to be
charged, what is the sign of the charge? How
would the leaf of the positively charged
electroscope react if the body were neutral?

2 When a flame is brought near a charged
electroscope, the foil collapses. How is this
explained?

3 Three identical conducting spheres have
charges of +3C, =2C and =7 C. If all three
are allowed to touch and are then separated,
what will be the charge on each sphere?

4 (a) What is the force between two charges of
2.0 uC and 4.0 o C separated by 5.0 em?
(b} What does the force become if the
separation is doubled?
5 Three charges are placed on a straight line as
shown in Figure 1.12. Find the net force on
the middle charge.

40cm 2.0 ¢cm
Figure 1.12 For question 5.

6 (a) In the previous question, where should the
middle charge be placed so that it is in
equilibrium?

{b) 1s this a position of stable or unstable
equilibrium?

7 Find the force (magnitude and direction) on

the charge @ in Figure 1.13 where Q= 3 uC.

Figure 1.13 For question 7.

8 Four equal charges Q= —5 uC are placed at
the vertices of a square of side 12 cm, as in
Figure 1.14. Find the force on the charge at
the top right vertex,

Figure 1.14 For question 8.

9 Two plastic spheres each of mass 100.0 mg
are suspended from very fine insulating strings
of length 85 cm. When equal charges are
placed on the spheres, the spheres repel and
are in equilibrium when 10 cm apart.

{a) What is the charge on each sphere?
{b) How many electron charges does this
correspond to?
10 A small plastic sphere is suspended from a
fine insulating thread near, but not touching,
the sphere of a Van de Graaff generator that is
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1

12

being charged. It is observed that the plastic
sphere is slowly attracted toward the Van de
Graaff sphere and eventually touches it, at
which point it is violently repelled. Carefully
explain these pbservations.

Consider two people, each of mass 60 kg, a

distance of 10 m apart.

{a) Assuming that all the mass in each person
is made out of water, estimate how many
electrons there are in each person,

(b} Hence, estimate the elecirostatic force of
repulsion between the two people due to
the electrons. ,

(c) What other simplifying assumptions have
you made to make your estimate possible?

{d) No such force is observed in practice.
Give one reason why this is so.

A negatively charged rod is allowed to touch

the sphere of an electroscope that is initially

uncharged. The rod is then removed. Draw
the charge distribution of the electroscope and
explain your drawing.

13

14

15

A positively charged rod is allowed to come
close to, but not touch, the sphere of an
electroscope that is initially uncharged.

(a) Draw the charge distribution of the
electroscope and explain your drawing,

(b) The electroscope sphere is earthed while
the rod is still nearby. Draw the charge
distribution of the electroscope and
explain your drawing.

(c} The rod is now removed. Draw the charge
distribution of the electroscope and
explain your drawing.

Repeat the previous question but now assume

that the cage of the electroscope is conducting

and earthed,

A negatively charged sphere is lowered
inside a hollow metallic container and is
allowed to touch the inside of the container.
The sphere is then removed. What is the
charge on the sphere? How is the law of
conservation of charge satisfied in this
experiment?
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Electric field and
electric potential

Electric charges create electric fields in space. The nolion of electric field and the related

concept of electric potential are introduced in this chapter.

Objectives

By the end of this chapter you should be able to:

= appreciate that a charge g in an electric field of magnitude £ will

experience a force of magnitude F=¢F;

* understand that the electric field of a point or spherical charge (0 a
distance r away has a magnitude given by F, = k= and is radial in
direction - the field is zero inside a charged conductor;

* understand that the electric field inside parallel plates is uniform and its

magnitude 15 given by £ = .L

« understand that the work done in moving a charge q across a potential

difference AV is W = gAV;

* understand that a charge ¢ that is at a point where there is potential 1

will have an electric potential energy of U=qg1";

* understand that a charge moving in an electric potential satisfies the law

af conservation of energy: tmvi + gV = smvi + g V.

Electric field

The space around a charge or an arrangement
of charges is different from space in which no
charges are present. We say that it contains an
electric field. We can test whether a space has
an electric field by bringing a small positive
charge q into the space, If this small charge g
experiences a force, then there exists an electric
field there. If no force is experienced, then
there is no electric field (the electric field is
zero). This small charge is called a test charge,
because it tests for the existence of electric
fields. It has to be small so that its presence
does not disturb other charges in its vicinity.

» We define the electric field as the force
per unit charge experienced by a small
positive test charge q:

gul

i

Note that the electric field is a vector, its

direction being the same as that of the

force a positive charge would experience
at the given point. It follows that the unit
of electric field is NC ™',

The concept of electric field allows us to
understand how a force is transmitted from one
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charge to another. A charge g placed at a point
where the electric field is £ will experience a
force given by F = gE.

» The electric field from a single point
charge () at a point a distance r away is

E|l = IEE;
- oy

This is because the force experienced by a test
charge g placed at point P a distance r from
is (by Coulomb’s law)

F=kd

and so the electric field is

Ep=

xa|m

k L"qur

(see Figure 2.1).

o r test charge o
Figure 2.1.

Similarly, at a distance r from the centre of a
sphere on which a charge Q has been placed,
the electric field is given by the same formula
as above. On the surface of the sphere of radius
R the electric field is

a
EFI:RE

but inside the sphere the electric field is zero.

inside any conducting body (see Figure 2.2).
~ This is because electrostatics deals with
situations in which electric charge does not
- move. If an electric field existed insidea
conductor it would force charges to move,

L ]

i, dmt r
Figure 2.2 The electric field inside a
conductor 1s zero.

Electric field lines

A very useful concept in dealing with electric
fields is that of electric field lines. These are
imaginary lines (curved or straight) with the
property that the tangent to a field line at some
point P gives the direction of the electric field
at P. A single positive charge creates an electric
field that is directed radially out of the charge.
Thus the electric field lines in this case are
straight lines coming radially out of the charge.
In the case of a negative charge, the lines are
directed into the charge. Figures 2.3-2.6 show
the field lines for various arrangements of
charges.

Figure 2.3 The electric field of a point or spherical
charge is radial. The field of a negative charge
would be directed inward.
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Figure 2.4 Electric field lines for two equal and
opposite charges.

Figure 2.5 The electric field of two opposite and
unegual charges. The charge to the right is three
times larger than the left charge.

Electric field lines are usually drawn with the
convention that the more lines starting from a
charge, the larger the charge. The density of
lines at a given point (i.e. the number of lines
crossing a small area centred at the point) is
proportional to the magnitude of the electric
field at that point.

il
TN

Figure 2.6 The electric field of two equal positive
charges. The mid-point of the line joining the
charges has zero electric field.

A uniform electric field is one that has constant
magnitude and direction. Such a field is
generated between two oppositely charged
parallel plates (see Figure 2.7). Near the edges of
the plates the field lines are curved, indicating
that the field is no longer uniform there. This
edge effect is minimized when the length of the
plates is long compared with their separation.

positive (high)

negative (low)

Figure 2.7 The electric field lines for two long,
parallel charged plates.

Example question

()] EiTasarssic s IVTTEECTITTYTSSCESSESRIERILI
The electric field between two parallel plates is
100.0 N C'. What acceleration would a charge of
2.0 uC and mass 107 kg experience if placed in
this field? {lgnore its weight.)
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Answer

The force is found from F = Fq to be

F = 2.0 x 10~ N. Now, using F = ma, we find
a=0.2ms2

Electric potential

An electric charge creates an electric field in
the space around it. It also creates a related
quantity, an electric potential. Consider a
positive charge (0 and a positive test charge q.
If the charge g is moved closer to Q, work must
be done on ¢. This is because the two charges
repel and so a force must be applied to q to
make it move closer to (.

» If the work done in moving the positive
test charge q from very far away to some
position P near Q is I, then the quantity

i
q
ﬁeﬁneathepntmuzlatl"lnaﬁm*m _
the patential at a point is the work per unit -
_dmrgthatmusthednnemhringthe -
positive test charge from far away to the
'3pamtqftntermt.'ﬂ1eumofpamuﬁalis
' .themlt.andTanC“ {seeﬁgmzs.}

o : Hmipmmmwf
@) T festehargeg

initinl positionof =
' estchagegis
; s .'-Wi}fﬁ-iﬁmiﬂ
mgmm%em ned to bring the
~small positive charge from far away to4a
point near the charge Q goes mtu eiecn*ic
putenualenergy

Example question

()2 erssyasresss IS i IS I ITERTISINTE RS
The work done in moving a test charge of 2.0 uC
from very far away to a point P is 150 x 107%).
What is the potential at P?

Answer
From the definition, the electric potential at P is

v

q

150 = 107"
Zxi0
=75Y

The route taken by a charge g to get to P does
not affect the amount of work that has o be
done on the charge (see Figure 2.9).

V=25V final position of
P test charge o

initial position of
test charge is very
far away

Figure 2.9 The work done in moving a charge g
from far away to P is the same no matter what
path is followed. If ¢ = 2 C the work done is 50 |
for all three paths.

The work that is done in moving the test charge
{ from far away to point P goes into electric
potential energy of the charge ¢. Thus, if the
potential at some point in space is VV volts and a
charge g is placed at that point, the electric
potential energy of the charge is

U=qVv

Example question

()3} EnsrTEeTr eSS T TS P F YL IN]
The potential at a point P is 12 V and a charge of
3 Cis placed there. What is the electric potential
energy of the charge? What is the electric
potential energy if, instead, a charge of =2 Cis
placed at P?

Answer

The electric potential energy of the charge is

U=qV
=3 %12
= 36 ]
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It a negative charge is placed at F, the electric
potential energy is

U=gqgV

(—2) = 12
—24 |

Potential difference

Consider now an arrangement of charges that
creates an electric potential in the space around
it. What happens when a charge ¢ is moved
from one point to another? In Figure 2.10 the
electric potential at point A is 15 V and at point
B it is 28 V. A charge of 2 C initially at A is to be
moved to B. What work must be done on the
charge?

ep
28V

A
15V

Figure 2.10 A charge moving across a potential
difference.

The electric potential energy of the charge in
position A is

U,».,:{.i'V,al
=2x15
=301J

The electric potential energy at position B is

UB =q1-"rE
=2x28
=56

The change in the potential energy is thus

AU =Ug = U,
= 56— 30
=26

This is the work that must be done.

”'_"mnpoinu. et St inds

Example question

() TIPS T i I R R T
What work must be performed in order to move a
charge of 5.0 xC from the negative to the positive
plate if a potential difference of 250 V is
established between the plates? (See Figure 2.11.)

positive
TP o
negitive

Figure 2.11.

Answer

The work done is simply

W=q(V — Vi)
= 5.0 x 107" x 250
=1.25x107%]

Consider now a charge g that moves in a region
of electric potential. Let the speed of the charge
be v, at position A and vy at position B. The
electric potential at point A is V4 and at point B
it is I (see Figure 2.12). The mass of the charge
is m.

At position A the total energy of the charge is

Tmvi+qVa
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A
Va

Figure 2.12.

At position B the total energy is
Tmvg+qVs
By the law of conservation of energy:

sy +qVy = ymvl +qVy

Example questions

()5 TN TSI Tl I LT PSP TIEY
A charge of 5 uC and mass 2 x 10°® kg is shot
with speed 3 x 10° ms™' between two parallel
plates kept at a potential of 200 V and 300 V,
respectively, as shown in Figure 2.13. What will
the speed be when the charge gets to the right
plate?

— — |

200 300V
Figure 2.13.

Answer

We apply conservation of energy and so

[2% 107 x (3% 10%)°] + (5 x 10 x 200)
=1(2x 10" x vj) + (5 x 107° x 300)

= vg=200ms™’

()6 ey ST T IR I LM MM ST T T TSI ET

What must the initial velocity of an electron be if

it is to reach the right plate of Figure 2.14 and

momenlarily stop there? (Charge of electron

= —1.6 x 107" C; mass of electron
=9.1 x 10" kg.)

— |

FAY ov
Figure 2.14.

Answer

We use conservation of energy again to find

(91 x 107" x V) +(-16x107") x 2=0
=v==84%x10° ms",

The electric field between parallel
plates

So far we only have a formula for the electric
field of a point or spherical charge. In the case
of parallel plates, the expression for the electric
field is

v
e
where V' is the potential difference between the
plates and d is their separation. The electric
field has this value at all points in between the
plates. Its direction is from high to low
potential (see Figure 2.15).

high potential

== separation

low potential

Figure 2.15.

Example question

(7 IS ST I IIT TE T LR S S PPV ETTIICEE S
Figure 2.16 shows two long, parallel, oppositely
charged, vertical plates. Draw and explain the
path followed by a positively charged sphere of
charge g and mass m when:

{a) the sphere is released from rest at point P;
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{b) the sphere is released from rest outside the
plates at point Q above P.

Qo

P ?—‘.':’
positive ¥ negative
Figure 2.16.

Answer

The sphere is acted upon by two forces: the
weight mg and the electrical force gE, where E is
the horizontal electric field between the plates.
Thus, the sphere has a vertical component of
acceleration equal to g and a horizontal
component of gE/m to the right.
(a) There is no initial velocity here and so the
charge will follow a straight-line path along
the direction of the resultant force.

{b) Between the two plates, the horizontal
and vertical components of displacement
are

= !‘+1 t
= u =
¥ ZR

(v is measured positive downward and t is
measured from point P). u is the velocity the
sphere acquires once it reaches point P,
Eliminating time gives a curve

2mx  mg
Y=UGE T e

and not a straight line for the path.

The electronvolt

The study of atomic physics introduces us to a
world of small scale. The energy scale that

characterizes the atomic world is one of about
10 ™. This is a tremendously small amount of
energy by macroscopic standards; the joule is
not the appropriate energy unit for atomic
physics. A more convenient unit is the
electronvolt, eV. When a charge g is moved
from a point A to a point B between which a
potential difference A} exists, then the work
done is W =gqAV.

p This relationship allows us to define the
electronvolt as the work done when a
charge equal to one electron charge is
taken across a potential difference of one
volt. Thus :

TeV=T16xT10""Cx1V
=1.6x107"7J

If a charge equal to two electron charges is
taken across a potential difference of 1V, the
work done is 2 eV; a charge of three electron
charges across a potential difference of 5V
results in work of 15 eV and so on.

Example question

()8 or R N T S I S ST L I T SR
What is the speed of a mass m= 1.6 x 10% kg
whose kinetic energy is 5000 eV?

Answer
From

fk= ~|-.I'TI"I.-"'.

[2,
m

= V=

|2 % 5000 % 1.6 x 10~
=_[- - m s
1.6 = 104

=10"ms™’

The point being made here is that in calculations
electronvolts must be changed to joules, the Sl
unit of energy.
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Questions

1 Draw the field lines for:
(a) two equal charges;
{b) two equal and opposite charges;
{c) two charges of the same sign, one double
the other;
{d) two charges of opposite sign, one double
the other.

2 Why must field lines be normal to conducting
surfaces in electrostatics?

3 Copy the two diagrams in Figure 2.17 and
draw the electric field at the points
indicated, showing their relative size. The
charges on the spheres are equal in
magnitude.

Figure 2.17 For question 3.

4 Two parallel plates are separated by 10.0 cm
and a potential difference of 500.0 V is
maintained between them. What is the force
on an electron placed:

(a) 2.0 cm from the bottom plate;

(b} 4.0 cm from the bottom plate;

{c) 6.0 cm from the bottom plate?

{d} How much work is required to move an
electron from a position 2.0 cm from the
bottom plate to a position 2.0 cm from the
top plate?

5 The electric field at a point in space has
magnitude 100 N C-' and is directed to the
right. If an electron is placed at that point,
what force and acceleration would it
experience?

6 If a charge of magnitude +5.0 uC experiences
an electric force of magnitude 3.0 x 1075 N
when placed at a point in space, find the
electric field at that point.

7 The electric field is a vector and so two
electric fields at the same pojnt in space

must be added according to the laws of
vector addition. Consider two equal positive
charges, each 2.00 uC, separated by

a = 10.0 cm and a point P a distance of

d = 30.0 cm as shown in Figure 2.18. The
diagram shows the directions of the electric
fields produced at P by each charge. Find
the magnitude and direction of the net
electric field at P.

{:} P

Figure 2,18 For question 7.

8 Repeat the calculation of question 7 far
two charges that are unequal. Take the
top charge to be 4.00 £C and the other
2.00 uC.

9 Figure 2.19 shows lines along which the
electric potential is constant and has the value
given.

{a) Find the work that is required if a charge
of 5.0 C is to be moved from the 100.0 V
line to the 200.0 V line along path I.

(b} How much work would be required if the
same charge were moved along path (17

(c) If the 5.0 C charge were first to move to
the 300.0 V line along path Il and then to
the 200.0 V line along path I, how much
work would be required then? Compare
your answer to that in part (a).

100V 200V
300V

Figure 2.19 For question 9.
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10 (a) An electron placed on the 100.0 V

1

12

13

surface described in question 9 and
released from rest would accelerate
toward higher potential. What speed
would it acquire by the time it reached
the 200.0 V surface?

{b) If a proton were released from the 200.0
\ surface, it would accelerate toward
lower potential, What speed would it
have when it reached the 100.0 V
surface?

Two uniform electric fields of magnitude
E,=M5NC" and E; = 125NC™" are
produced by two pairs of parallel plates as
shown in Figure 2.20. Find the magnitude and
direction of the net electric field at the points
indicated.

. & 4 &
E, T
00—

- R

'y

'

Y

Ea

Figure 2.20 For question 11.

A conducting sphere of radius 15.0 cm has a
positive charge of 4.0 uC deposited on its
surface. Find the magnitude of the electric
field produced by the charge at distances from
the centre of the sphere of:

{a) 0.0 cm;

{b) 5.0 cm;

(c) 15.0 cm;

(d) 20.0 cm.

A particle of mass m and electric charge q is
suspended vertically from the end of a spring
of spring constant k. At equilibrium, the length
of the spring extends by an amount x,. The
particle is now placed in a uniform electric
field E, as shown in Figure 2.21. At the new

equilibrium position, the spring is extended by
an amount 2x.
{a) Determine the sign of the charge.

(b} Determine the magnitude of the electric
field strength F in terms of m, g and g.
The mass is now displaced by a small amount

and is released.

(c) Explain why the oscillations that take
place are simple harmonic.

(d) Is the period different from the period
when the field was absent?

electric field

L L - v

Figure 2.21 For question 13.

14 Two positive point charges of magnitude Q

and 90 are a distance d apart, as shown in
Figure 2.22.

{a) Calculate the electric field strength at
point P, a distance ¢ from Q.

A third positive point charge is placed at P

and is then displaced a bit to the right.

{b) Explain why the charge will perform
oscillations when released.

(¢} Are the oscillations simple harmonic?

id) How does your answer to (b) change if the
third charge is negative?

d
[ » 90
B -2 -
+~— »P
d
4

Figure 2.22 For question 14,
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15 Consider again the previous problem. expression for the net force you found
Suppose that the third positive charge in (a) to show that it is approximately
placed at P has a magnitude g and mass equal to
m. It is displaced to the right of P by a 256k
small amount A, L TR

{a) Find an expression for the net force on

where x is the displacement from
the charge q.

point P,
(b) Inlmalhf:matlcs it can be proved that if | (5 Hencsidelamine the nakire ofihe
x is small then ' oscillations that will take place when

1 o I 1 the charge g is released.
(1 + )2 : ‘




CHAPTER |

Electric field and
electric potential

This chapter deals with more involved examples of electric fields and potentials and
discusses the connection between electric field and electric potential. The concept of
electric potential energy is introduced and discussed in simple situations.

Objectives

By the end of this chapter you should be able to:

s define the terms electric field, electric potential and electric potential energy
(L4 = qV,) and calculate these quantities in simple situations;

+ define equipotential surfaces and field lines and state the relationship between
them;

+ understand that electric fields and electric potentials are related by
E=2 or E=-5

» understand that the potential is constant inside a conductor and the electric
field is zero;

+ understand that work is done when a charge moves across a potential difference
Wa..a = g(Va — Ve)i

» state the similarities and differences between gravitation and electricity.

Electric fields

As we saw in Chapter 5.2, if a positive test
charge g experiences an electric force F. the
electric field at the position of the test charge is
defined as the ratio of the force to the charge:

F
q

The direction of the electric field is the same
as the direction of the force (on the positive test
charge ). At a point a distance r away from a
charge Q, the magnitude of the electric field is

Q

e

Vector methods can then be used to find the
electric field due to an arrangement of point
charges. An example is that of the dipole, which
has two equal and opposite charges separated
by a distance a (see Figure 3.1).

00O r

"""" O e B
£ — c"#___&_ﬁ_ﬂ
D@

Figure 3.1 Two equal and opposite charges
separated by a given distance form an electric
dipole. The diagram shows the electric fields
that must be added as vectors to get the net
electric field at P.
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We would like to find the electric field created
by a dipole. It is easiest to find this field on the
perpendicular bisector of the line joining the
charges. At other points, the answer is more
involved. Thus, consider a point a distance d
from the midpoint of the line joining the
charges. The electric field at P has a
contribution of Ey = ;- £ from each charge,

dmwe 2

directed as shown. The horizontal components
will cancel each other out but the vertical
components add up. The vertical component of
Ep is Epsiné and since sin# = a/2r we find
(recall 7% = d? +

] Qa

" 4ne 3

(a2 4 2)?

This is directed vertically downwards, in the
direction of the vector from Q to —Q. The
quantity Qa is called the dipole moment.

If both charges were positive, the corresponding
electric field would be given by

| 20d

=4J'!.'€c| (dz'l-d;)i

and would be horizontal (along the
perpendicular bisector to the line joining the
charges).

Electric potential and energy

Suppose that at some point in space we place a
charge (2. Assume for concreteness that it is a
positive charge. If we place another positive
charge ¢ nearby and try to move it even closer
to the large charge Q, we will have to exert a
force on g, since it is being repelled by Q (see
Figure 3.2). That is, we have to do work in order
to change the position of ¢ and bring it closer
to Q.

q brought near 0% q at infinity

. Pe °
Q

Figure 3.2,

The work done in moving a charge g from infinity
to point P goes into electric potential energy. Thus

Electric potential and electric potential energy are
scalar quantities. Note the definition of potential,
which involves taking a charge from infinity to
some point P. This definition does not specify
along which path the charge must be moved from
infinity to point P. In fact, the properties of
electric potential are such that the amount of
work done would be the same irrespective of
which path is taken. This is reminiscent of gravity:
the change in gravitational potential energy when
a mass m is moved from a position A to a position
B is always mgh where h is the vertical separation
of the two points A and B. The actual path
followed by the mass is irrelevant. The
gravitational and electric forces are called
conservative for this reason. Friction is an example
of a force where the amount of work done does
depend on the path followed: it is obviously
harder to push a heavy suitcase a long distance as
opposed to a short distance. Such forces are called
dissipative. An immediate property of conservative
forces is that, if a body is moved along a closed
path, the amount of work done is zero. This also
means that, if the potential at point P is V' volts,
the amount of work done when a charge g is
taken from P to infinity is —qV.
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Consider now two points, A and B, in the vicinity
of a charge ( (see Figure 3.3). The electric charge
creates an electric potential everywhere in space,
and at points A and B the potential is V and V5,
respectively. If we place a charge ¢ at point B and
move it from B to A, what is the work done?
Since the amount of work done is independent
of the path followed, we can calculate this work
along paths for which we know the answer. We
first take the charge from B to infinity and then
from infinity to A

oh
from infinity

to infinity
Figure 3.3 Work must be done in order to move a
charge from one point to another where the
potential is different.
On the first leg, the work done is —gVs and on the
second leg it is qV/,. Thus, the total work done is

Wan =q (Vi — Vg)

The quantity Vy — V; is the potential difference
between A and B. Points at infinity are
considered to be at zero potential. We have
talked at some length about the electric
potential that a charge () creates in space. But
how do we calculate this potential? To do this
we need calculus, so what follows may be
omitted and only the result may be noted.

Supplementary material

When the positive charge g is al some distance r
from @, it experiences a repulsive force

Thus, the force with which we must push the
charge g to move it closer to @ is directed as
shown in Figure 3.4, If we push a small distance
dr, the work done is dW and

dW:—Fdr
Bty
T Ame, 1?

L rrIs -4 o

Q i F q

Figure 3.4 Diagram for calculating the work
done in moving a positive charge from
infinity to a point near another charge.

(The minus sign in d W is there because the force
pushes the charge towards Q but dr is positive
when directed away from .} The total waork
done is therefore

o
f A, r3
-]

1

Q"
4Jr£ r
1 Qg
4::5;.._—

e

But, by definition, W= gV}, so

e

dmey R

Thus, the electric energy of a charge g a distance
r from another charge Q is

1 Qg

dwey

In all these formulae, the charges must be
entered with their correct sign.

Example questions

O1 28034853 11 B0 ST EETREST STy Sy IV ISR TG
Find the electric potential energy between the
proton in a hydrogen atom and an electron
orbiting the proton at a radius 0.5 x 107" m, The
proton has a charge 1.6 % 107" C, equal and
opposite to that of the electron.

Answer

From the formula

1.6 x 107" % (=1.6 % 107'%)
0.5 x 100
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()2 1204sesrreTos TR TFREIITII R ESHEAISE S2ET2ITS
Find the electric potential a distance of

0.50 = 107" m from the proton of the hydrogen
atom.

Answer
Vo= 2
dmwey 1
and so
II.EI‘ =19
Vi=9 % 10? =% &
0.50 = 10-"
=29V

()3 T A T S T I T RN T
Find the electric potential energy for four charges

of 2 uC each placed at the vertices of a square of
side 10 cm.

Answer

Maming the charges as 1, 2, 3 and 4 (see Figure 3.5)
we see that there are six pairs of charges: (1, 2),
(1, 3), (1, 4), (2, 3), (2, 4) and (3, 4)

Cr )

1 2
4 é &
Figure 3.5.
Therefore

U=9x10"x4x10"
1 i 1 | I I

—---'——{-— —+—-.—. —
o KT T R T R T T R T -
% 10% |

Thus

U=19]

Electric potential is a scalar quantity. So if we
have not one but two charges, Q, and Q-, the
electric potential at a point P that is a distance
ry from @, and a distance r; from Q; is just

Q. 1 Q

o "']'.?!'Eﬂ Fy 4?1'5‘1] rs

Ve

that is, we first find the potential at P from (1,
alone then from Q> alone and add up the two
[see Figure 3.6).

4

r

L]
;

Figure 3.6 The potential at P is found by finding
the potential there from the first charge, then
finding the potential from the second charge,
and finally adding the two.

Figure 3.7 shows the electric potential from one
positive and one negative charge. In the absence
of charges, the surface would be flat. The
potential is represented by the height from the
flat surface.

Figure 3.7 The electric potential due to two equal
and opposite charges. The potential is
proportional to the height of the surface.

The same procedure is followed for more than
two charges. This simple formula for electric
potential works in the case of point charges:
that is, the objects on which the charges (; are
placed are mathematical points or close to it. [t
also works in another special case. It works if
the object on which the charge Q is placed is a
sphere. But this is somewhat more delicate. If
the point P is outside the sphere and at a
distance r from the centre of the sphere, then
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the potential at P is indeed

1 Q

T dmey

Vo

On the surface of the sphere the potential is

_1.aQ

dreg R

where R is the radius of the sphere. But at any
point inside the sphere the electric potential is
constant and has the same value as the
potential at the surface. (See Figure 3.8.)

ve

v

v

(b}

Figure 3.8 The electric potential is constant inside
the sphere and falls off as 1/r outside. Shown
here are (a) a positively charged sphere and (b) a
negatively charged sphere.

Example questions

()4 SrrevsseraIee ST EE T HITIM SESETS TR
Two spheres of radii r and R = 10r are connected
by a long conducting wire. Before connecting, the
big sphere had an amount of charge @ on it and
the smaller sphere was uncharged. How much
charge is there on each sphere now?

Answer

See Figure 3.9.

The potential on the big sphere is V, = 2
and on the small sphere Vi = f’;‘; Here

Q, + Q. = Q, by conservation of electric charge.
When connected by the wire the two surfaces

o before 0 after

Q=0
O &)

Figure 3.9.

must be at the same potential, V; = V4, and so

1 8.1 o
dme; R dmwey T
L2_2
K r

Using R = 10r we find @ = 2Qand Q= Q.
It can be seen that the big sphere has more charge
than the small one even though they are both at
the same potential.

()5 areEEEE T T T EEESSSYI I FTS
Find the ratio of the electric field on the surface of
the small sphere to that on the surface of the big
sphere in Example question 4.

Answer

8
4 ey R?

100N
are,(10r)

10011
4 e, 100r?

0} 1
dmweqrt ~ 10 = 11
__Q

dmeyr®

Qi

dmwe,r?

Q 1

dmegr? 11

E,

and so

E:
E,

= T8

that is, the small sphere has a bigger electric field
on its surface. The small sphere is more curved
than the big one and electric fields are largest
near sharp objects.
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Vi

It." &

0 d

- .
L L

L x

Figure 3.10 The potential increases uniformly as we move from the lower to the upper plate.

Parallel plates

There is one other case that is straightforward
enough to allow us to write down a simple
formula for the electric potential. This is the
case of two long parallel plates separated by a
distance d (see Figure 3.10).

If, for the sake of convenience, we take the top
plate to have the higher potential, V5, and the
lower plate to have potential V;, then the
potential at any point with vertical distance x
from the lower plate is

X

Vix)= V) + (Vs —lf’r}d

You can check that this formula gives the
correct answers when x = 0 (lower plate) and
x =d (top plate). Halfway between the plates
x =% and V = 42 The potential increases
uniformly from the lower plate to the top. The
electric field between the plates is uniform, as
we already know.

Equipotential surfaces

Points in space that have the same potential are
said to define equipotential surfaces. For
example, for a single charge Q, the
equipotential surfaces are concentric spheres
centred at the charge, as shown in Figure 3.11.

All the points on a given sphere are at the same
distance from the charge and hence at the same
potential. For the two parallel plates, the

Figure 3.11 The equipotential surfaces of a point
charge are concentric spheres.

high

low V increases
uniformly

Figure 3.12 The equipotential surfaces for two
parallel charged plates are planar.

equipotential surfaces are planes parallel to the
plates (see Figure 3.12).

Figure 3.13 shows the equipotential lines for
two charges: a positive charge of 4 C at point
(0.3, —0.3) and a negative one of -1 C at point
(0.7, 0.7).

When a charge moves from one point of an
equipotential surface to another point on the
same equipotential surface, the work done is
zero, since the potential difference between the
two points is zero.
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Figure 3.13 The equipotential surfaces of two
opposite, unequal charges. :

The connection between electric
potential and electric field

There is a deep connection between electric
potential and electric field.
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We can show this as follows (see Figure 3.14). Let
a small positive charge g be placed at a point
where the potential is ;. We want to move it a
distance Ar away to a position where the
potential is at a higher value V. The force on
the charge is I =¢E and so the work done is

W = F Ar = gE Ar. But the work can also be
found from W =gAl/, and so

qEAr =qAV
= F = E
Ar

—
E*
4
F - q
Vi Vs

Figure 3.14 The electric field lines are directed to
the left and so is the force on the positive
charge g. If the charge is moved to the right,
work must be performed.

This says, in particular, that if the electric
potential is constant in some region of space,
then the electric field is zero there. (Recall that
the electric potential is constant inside a
conducting sphere; the result above says
therefore that the electric field is zero inside
the sphere as we stated earlier.) This
relationship also states that if the potential
difference between two parallel plates is V' and
the separation between the plates is d then
k=S rIT and is the same at all points inside the
plates. It is perpendicular to the plates and is
directed from high to low potential.

Example questions

Qﬁ ERi I E BTN AN I TP e
A wire of length L has a potential difference V
across its ends. Find the electric field inside the
wire, Hence find the work done when a charge g
is moved from one end of the wire to the other.

Answer

From E = ‘1—‘:’ it follows that £ =

done can be found in two ways. Either by using

JE, The work

W= gAV =qV
or by
v

as before,
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Q? e T T [ L i A ST P P o s I T
The electric potential a distance r from a charge
Qis V= % Use this expression to find the

Ay ¢

electric field at the same point.

Answer
Here we must use the calculus expression

dv
dr

- :I(I Q)
 dr \dme, r

1 Q
dme, rt
as we expect.

The connection between electric potential and
electric field extends to equipotential surfaces
and electric field lines. It can be shown that
electric field lines are always normal to
equipotential surfaces. Figure 3.15 illustrates
the equipotential surfaces due to a positive
point charge and superimposed on these
surfaces are arrows representing the electric
field lines of the charge.

electric field line
—

eiquipotential

Figure 3.15 The electric field is normal to the
equipotential surfaces.

The surfaces of conductors are equipotential
surfaces, so electric field lines in the presence
of conducting surfaces are normal to them, as

in Figure 3.16. This can be explained as follows.
If electric field lines were not normal to the
conducting surface, there would be a
component of electric field along the surface.
Such a field would cause charges to move — an
electric current would be established on the
surface. This, however, is not consistent with
the assumption that we are dealing with
electrostatic situations, in which charges do not
move. Hence the electric field lines must be
normal to the conductor, and so the conductor
surface must be an equipotential surface.

impossible
field lines

field lines are
normal 1o a
conductor

Figure 3.16 Properties of field lines, Field lines are
normal to conducting surfaces. Field lines
cannot cross.

Similarities between electricity
and gravitation

As is clear from a comparison between Newton's
law of gravitation and Coulomlby’s law, there are
many similarities between electricity and
gravitation. Table 3.1 shows a few of the

Acts on Mass [positive Charge (positive
anly) or negative)
MM 1_@:G;
Force F=G —I1—“'r_ Fie= i =
Artractive Attractive or
anly repulsive
Infinite range Infinite range
Relative 1 10+
strength
full 1 Q
. - A 1.0
Potential V= -G3 £ = b
Work Independent Independent
done of path of path
: M 1O
Potential U=-G4" = et
Energy

Table 3.1 A comparison of gravitation and
electricity.
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similarities and differences between the two. 3 (a) What is the electric potential at the

The biggest difference is, of course, the mid-point of the line joining two equal

existence of two kinds of electric charge, which positive charges ) ? Take their separation

implies that the electric force can be attractive to be d.

or repulsive. The one kind of mass leads to only ib) What is the electric potential at the mid-

attractive forces, point of the line joining two equal but
opposite charges?

4 Two charges, Q, = 2pCand @, = —4uC, are

- ¢ . 0.3 m apart. Find the electric potential at a
In some innovative work during the early point P which is 0.4 m from @ and 0.6 m
part of the twentieth century, T. Kaluza and feor O

0. Klein considered that the universe has

four space and one time dimensions instead

of the usual three plus one. Thé extra
dimension, they claimed, is curled up as a

tiny circle and is essentially unobservable.
They then showed that if gravitation is the only
force in this five-dimensional universe and we
now insist on looking at only its four- 6 An electron is brought from infinity to
dimensional part, electricity arises naturally a distance of 10.0 cm from a charge of
from gravitation in this reduction from five | ~10.0 C. How much work was done on the
to four dimensions! electron?

Questions

1 A charged rod is brought near three |

lementary material

5 A charge Qof 10.0 C is placed somewhere in
space, What is the work required to bring a
charge of 1.0 mC from a point X, 10.0 m from
03, to a paint ¥, 2.0 m from ¥ Does the
answer depend on which path the charge
iollows?

7 An electron moves from a point in space
where the potential is 100.0 V to another
point where the potential is 200.0 V. If it
started from rest, what is its speed at the end

conducting spheres resting on insulated
stands, as shown in Figure 3.17. The spheres
are originally touching. If they are now
separated with the rod still nearby, what will
be the sign of the charge on each sphere after
the rod is taken away?

Figure 3.17 For question 1.

2 Four equal charges of 5 pC are placed at the

vertices of a square of side 10 cm.

{a) What is the value of the electric potential
at the centre of the square!?

(b} What is the electric field there!

() How do you reconcile your answer with
the fact that the electric field is the
derivative of the potential?

of the trip?

Four charges are placed at the vertices of a
square of side 5.00 cm, as shown in Figure
3.18.

{a) On the diagram, show the forces acting on
the 2 uC charge. Find the magnitude and
direction of the net force on the 2 pC
charge.

ib) Calculate the value of the electric
potential at the centre of the square.

{c) How much work must be done in order to
move a charge of 1 nC initially at infinity
to the centre of the square!

—luc 2uC

ApC -3 uC
Figure 3.18 For question 8,
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9

10

11

The electric dipole moment of a molecule is

6.2 x 107 C m and the charges are assumed

to be £1.6 x 107" C. The molecule finds

itself in a uniform electric field of value

2.00 % 10* V m~' that is directed along the

plane of the page (see Figure 3.19). The dipole

also lies on the page.

{a) What is the separation of the charges?

{b} What is the net force on the dipole?

{c) What is the largest torque on the molecule
about an axis through its middle and
normal to the plane?

L 2 L 3

P E
£ :
o

Figure 3.19 For question 9.

v

Two conducting spheres are separated by a
distance that is large compared with their
radii. The first sphere has a radius of 10.0 cm
and has a charge of 2.00 xC on its surface.
The second sphere has a radius of 15.0 cm
and is neutral, The spheres are then
connected by a long conducting wire.

{a) Find the charge on each sphere.

{b) Calculate the charge density on each
sphere (charge density is the total charge
on the sphere divided by the surface area
of the sphere).

{c) Calculate the electric field on the surface
of each sphere.

{d) Comment on your result in the light of
your answer to part (b). Why is it stated
that the wire is long?

Figure 3.20 shows the equipotential lines for
two equal and opposite charges. Draw the
electric field lines for these two charges.

Figure 3.20 For question 11.

12

13

Two long parallel plates are separated by a

distance of 15.0 cm. The bottom plate is kept

at a potential of —250 V and the top at +250 V.

A charge of —2.00 uC is placed at a point

3.00 cm from the bottom plate.

{a) Find the electric potential energy of the
charge.

The charge is then moved vertically up to a

point 3.00 cm from the top plate.

(b) What is the electrical potential energy of
the charge now?

(¢} How much work was done on the charge?

An electron is shot with a speed equal to

1.52 % 10°* m s~ from a point where the

electric potential is zero toward an immovable

negative charge € (see Figure 3.21).

{a) What should the potential at P be so that
the electron stops momentarily at P and
then turns back?

(b) What is the magnitude of Q?

2.0% 10710

e
O ¥ - —.—
electron P Q

Figure 3.21 For question 13.
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14

15

Two equal and opposite charges are placed at

points with coordinates x = 0, y = a and

x =0, y= —a, as shown in Figure 3.22,

(a) Find the electric field at the point with
coordinates x = d, v=0.

(b} Repeat for two equal negative charges —g
on the y-axis,

(c) Plot these fields as functions of d,

+q

—q
Figure 3.22 For question 14.

A charge Q is placed a distance d from a very
large conducting plane. What is the electric
field at a point P a distance 2d from the plane?
{See Figure 3.23.)

d

: IO@
i

[ plane
O image charge

Figure 3.23 For question 15.

QIO 2d

[Hint: Answer this as follows (the method of
images). Draw field lines to convince yourself
that the same lines would be obtained if,
instead of the plane, an equal and opposite

16

17

charge were placed at a position that is the

mirror image of the charge in the plane. Thus,

the electric field in the presence of the plane
would be the same as the electric field of two
equal and opposite charges without the plane.

Thus, find this field at point P

A charge —g whose mass is m moves in a

circle of radius r around another stationary

charge q located at the centre of the circle, as

shown in Figure 3.24.

{a) Draw the force on the moving charge.

(b} Show that the velocity of the charge is
given by v! = %

{c) Show that the total energy of the charge is
given by £ = -—m%

{d) Hence find out how much energy must be
given to the charge if it is to orbit around
the stationary charge at a radius equal
to 2r.

Figure 3.24 For question 16.

Three protons are initially very far apart.
Calculate the work that must be done in order
to bring these protons to the vertices of an
equilateral triangle of side 5.0 x 10~ m.
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Electric current and
electric resistance

The motion of electric charges creates electric currents. This chapler discusses the

definition of electric current and electric resistance.

Objectives

By the end of this chapter you should be able to:

Al
A"

+ state the definition of electric current, =

« state the definition of electric resistance, B = =

!

+ appreciate that metallic conductors at constant temperature satisfy

Ohm's law, { o V'
= appreciate that the potential drops as one moves across a resistor in the
direction of the current;
+ understand that a resistor dissipates power, P = [,

Electric current

Our study of electricity so far has dealt with
stationary charges. New phenomena take place
when electric charges are allowed to move, one
of which is electric current.

» A moving charge creates an electric current.
Electric current is the amount of charge
that moves through the cross-sectional area
of a wire per unit interval of time:

fand
Al

The unit of electric current is the ampere,
one of the fundamental units of the SI
system, and 1 A =1 Cs™". (The definition of
the ampere is in terms of the magnetic force
between two parallel conductors; this will be
given in Chapter 5.6.)

Example question

(O I e Y Y55 v s
Light falling on a metallic surface causes the
emission of electrons from the surface at a rate of
2.2 % 10" per second. What is the current leaving
the surface?

Answer

The current is

22%x 10 %1610 CsT=35x10" A

In a conductor the 'free’ electrons move
randomly, much like gas molecules in a
container. They do so with high speeds, of the
order of 10° m s™'. This random motion,
however, does not result in electric current — as
many electrons move to the right as to the left
(see Figure 4.1).
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Figure 4.1 The random motion of the electrons
inside a conductor takes place at high speeds
but does not result in electric current. Current
is the amount of charge that goes past a given
point per unit interval of time.
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The electrons increase their kinetic energy as
they move through the metal but soon they will
suffer inelastic collisions with the atoms of the
material, which means they will lose energy to
the atoms. The electric field will again accelerate
the electrons until the next collision and this
process repeats. Thus, the electrons lose energy
constantly, which the atoms of the material
pick up. This means that these atoms will vibrate
about their equilibrium positions more and
this will show up macroscopically as increased
temperature of the material. We can make a
mechanical analogy of this (see Figure 4.2).
Imagine a ball rolling down an inclined plane
on which a number of pegs have been placed.

Gravity accelerates the ball down but as soon as
a collision with a peg takes place, energy is lost
and the ball will accelerate again from a
reduced speed.

HL only

We can estimate the magnitude of the drift
velocity as follows. Suppose that the conductor
is a wire of cross-sectional area A and that there
are n free electrons per unit volume in the
material. If the electrons move with speed v,
then in time At the number of electrons that
have gone through the cross-section of the wire
is simply the number of electrons inside the
volume of a cylinder of cross-sectional area A
and height vAt. The number of electrons in this
volume is nAvAt, and hence the amount of
charge that they carry is enAvAt. This is the
amount of charge that went past the wire in time
At, and thus the current is

I'=enAv

For a typical metal, n = 10 m % if the current
is I = 1 A in a wire of cross-sectional area 10 m*
(a typical wire), we find v = 6 x 107" m 57", This
is quite a low speed, perhaps surprisingly so.

If we turn on the switch for the lights in the
classroom (which are about 5 m from the
switch} we certainly do not have to wait for

—= § = 139 min for the lights to come on!
This is because, when the
switch is turned on, an
electric field is established
within the wire. This happens
at a speed close to the speed
of light. As soon as the field
is established, every free
electron in the wire starts

1!|:-c'||.'|

Figure 4.2 A mechanical model of the electron's
motion inside a metal. The speed of the electron
is increasing while the electric field is
accelerating it, in between collisions. After a
collision, the speed is reduced to zero and the
electron begins to accelerate again. The
electron’s kinetic energy has been transferred to
the atoms of the metal. The dotted line
represents the drift velocity ofthe electron,

time moving at the drift velocity,
so the electric current is
established in the conductor much faster than
the velocity of the electrons making up the
current.

It is a convention that the direction of electric
current is taken to be opposite to the motion of
the electrons, as shown in Figure 4.3.
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Figure 4.3 The direction of the current is taken to
be opposite to the actual electron motion,

An electric current is also produced when a
wire is heated so that it begins to emit electrons
in a phenomenon known as thermionic
emission. If the wire emits N electrons per
second, the current leaving the hot wire is
I=eN. Similarly, in the photoelectric effect,
light or other electromagnetic radiation causes
the emission of electrons from a metallic
surface on which it falls. The emission of
electrons is electric current that leaves the
surface. Whereas in solid materials electric
current consists exclusively of moving
electrons, in liquids and especially gases
positive ions may also be accelerated by electric
fields, resulting in currents due to positive
charges. In gases, even small electric fields can
produce currents due to positive ions. This is
because at low pressure electrons have a long
mean free path, so they can be accelerated to
high speeds by the electric field before colliding
with gas molecules. These high-velocity
electrons can then ionize atoms of the gas by
knocking electrons out of the atoms, leaving
behind positive ions, which also move under
the influence of the electric field.

As a consequence of the law of conservation of
charge, it follows that two devices connected in
series will take the same current. When a wire
comes to a junction, the current splits (not
necessarily equally) so that the current entering
the junction equals the total current leaving it.
(See Figure 4.4.)

the current is the same in
both devices

Figure 4.4 The current entering a junction equals
the total current leaving it.

Electric resistance

MNow we look at electric resistance and Ohm's law,
» The electric resistance of a conductor (for
‘example, a wire of given kngﬂﬂ is defined
as the potential difference across its ends

mwdedwmecum:ﬂwmgm@!it
. v
R L
_.l".

“The unit of elettﬁc.i‘ﬁi‘stéﬁi:é:is"thé'w&
per ampere and this is defined to be the
“ohm, symbol £2. The equation above is
the definition of resistance.

In 1826, Georg Ohm d:s::mmred that. when
the temperature of @ metallic conductor is
kept constant, the current through the:
conductor Is proportional to the pﬂtmual
‘difference across it

ToclV

‘This statement is known as Ohm’s law
Materials obeying Ohm's law thus have a.
‘constant resistance at constant tempera-
ture. A graph of / versus | gives a straight
line through the origin if the ma‘nmai si
obeys Ohm's law,

Most materials obey Ohm’s law at low
temperatures, but as temperature increases,
deviations from this law are seen. For example,
an ordinary light bulb will obey Ohm's law as
long as the current through it is small. As the
current is increased, the temperature of the
bulb increases and so does the resistance. Other
devices, such as the diode, also deviate from
Ohm’s law. These are illustrated in Figure 4.5.

A conductor with zero electric resistance is
known as a perfect conductor. In a perfect
conductor, electric current
can flow without a potential
difference established at its
ends. A class of materials
known as superconductors have
zero resistance below a certain
temperature (known as the
critical temperature) and are
thus perfect conductors.
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Ohm's law

S 7

-

*

{a) (b}

v -
(c)

Figure 4.5 Graph (a) shows the current-voltage graph for a material obeying Ohm’s law. A
lamp filament (b) and a diode (c) do not obey this law.

Factors affecting the resistance of a wire |
Three factors affect the resistanc¢e of a wire kept *I
at constant temperature. They are the nature of [
the material, the length of the wire and the |
cross-sectional area of the wire, For metallic
materials, an increase in the temperature
results in an increase in the resistance.
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Supplementary material

The dependence of resistance on length and
cross-sectional area can also be understood
as follows. If we combine the definition
of resistance with T = enAv and the fact
that the potential difference across a
length L of a wire is related to the electric
field E in the wire through V = EL, we find
that
L
T enAv

which explains the dependence on L and A.

Example question

(12 13 T T TS N RS IS0 ATV IN ITISTND
A wire is subjected to a tension so that its

length increases by 10% while the volume of

the wire stays the same. How
does the resistance of the wire

change?
Answer
length L length 21 .
Let L and A be the original
T potential difference =2V T length and cross-sectional

4 potential difference = V 4

Figure 4.6 If we double the crosssectional area A,
the current that can flow through the metal for
the same potential difference is doubled as well.
Hence, the resistance R halves. If we double the
length L, the potential difference at the ends of
the wire will double while the current stays the
same. Hence, the resistance R doubles.

area of the wire. The new
length is 1.11 and since the
volume stays the same, the
new cross-sectional area A'
must satisfy

A(1L1L)= AL

A
=?A'=1—
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Since R o L,l the new resistance is

o s LA
LA
LA
T LA
=1.1x 1.1
=1.21
=R =1.21R

that is, it increases by 21%.

Potential drop

The defining equation for resistance, § = —':f can
be looked at in the following way. Solving for
the potential difference V' we find

V=R

which says that if a current flows through a
resistor, then there must be a potential
difference across the ends of that resistor given
by the formula above. A resistor is thus said to
drop the potential. (In an electric circuit we
will often indicate a resistor by a box. The
conducting wires also have resistance, but
typically this is very small so we neglect it. The
words potential difference and voltage will
mean the same thing.) Suppose that in Figure
4.7, the potential at point A is 100 V, the
current is 5 A and the resistance is 15 £2. Then
the potential difference at the ends of the resistor
is ¥ =/R =5 x 15 = 75 V. Thus, the potential
at point B is 25 V. The resistance from B to C is
zero, so the potential does not change as we
move from B to C. The potential at all points
from B to Cis 25 V.

e
A B C

Figure 4.7 There is a potential difference across
points A and B but not between B and C.

Example question

QXTI R NS edntesrz--usasiotdicetisstamsreiry
In Figure 4.8, two resistors are joined as shown,
The top resistor receives a current of 3 A. What is
the current in the other resistor? What is the
current that enters at junction Af

A 00

1 1

304
Figure 4.8.

Answer
Both resistors have the same potential difference
across them (why?). The potential difference
across the top resistor is
V=IR

=3x10

=30V
and so for the lower resistor we have
I0=1%30
=l=1A
The current entering at A is 4 A.

Electric power

‘We saw earlier that whenever an electric charge
AQ moves from a point A to a point B such that
there exists a potential difference | between
these points, work is being done. This work is
W = (AMQ)V, Consider a conductor with a
potential difference across its ends of V. In
moving a charge AQ across the conductor in
time Al, the power dissipated in the conductor is

=¥V
since the current in the conductor is given by
J=230

=S
This power manifests itself in thermal energy
and/or work performed by an electrical device
{see Figure 4.9). In devices obeying Ohm's law
(i.e. when the resistance is constant), we can use

R = % to rewrite the formula for power in
equivalent ways:
/2
P=RIF=—
R R
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Figure 4.9 The metal filament in a light bulb
glows as the current passes through it. It also
feels warm. This shows that the bulb produces
both heat and light.

Example question

Q4 T Y e e s - S I ST I S - PR Ao = 5
A resistor of resistance 12 © has a current of 2.0 A
flowing through it. How much energy is generated
in the resistor in one minute?

Answer
The power generated in the resistor is
P=RI’

=12x4W

=48 W

Thus, in one minute (60 5) the energy generated is

48 x 60| =29 x10")

Electrical devices are usually rated according to
the power they use. A light bulb rated as 60 W
at 220 V means that it will dissipate 60 W when
a potential difference of 220 V is applied across its
ends. If the potential difference across its ends is
anything other than 220 V, the power dissipated
will be different from 60 W,

Example questions

QS R T L IS E L L I S DR A S =
A light bulb rated as 60 W at 220 V has a
potential difference of 110 V across jts ends, Find
the power dissipated in this light bulb.

Answer

Let R be the resistance of the light bulb and P the
power we want to find. Assumihg R stays constant

(so that it is the same when 220V and 110 V are
applied o its ends) we have

1104 220°
P=—— and 60=—"—"—
K I

Dividing these equations side by side we find

P 1N0YR
60 220°fR
1104
220?

=15W

Q& PSS i st ntasiinlars s shs o ni 2yt s v R
Figure 4.10 shows the variation of voltage across a
conductor with the current through the conductor,
Does it obey Ohm's law? What is the resistance

of the conductor when the current through it is
0.6 A? What is the power dissipated in the
conductor when the voltage across it is 1.5 V?

Vivalts

F

N
p E T

T 1 T T | T | 1 * IA
( (.2 04 06 0.8 | 1.2 1.4

Figure 4.10.

Answer

The graph is straight only for small currents (less
than about 0.5 A) and so the conductor obeys
Ohm's law only for these small currents.

The resistance at 0.60 A is

K=

_—-""'l"':

i

0.60

I

=i
[=
B
o



316 Core - Electricity and magnetism

When the voltage is 1.5 V, the current is about
0.82 A, s0

P =V
= 1.5 x 0.82
=1.2W

The cost of electricity
Electricity companies charge for electricity
according to the amount of energy used by the
consumer. A device that is rated at a power
value of 60 W, for example an ordinary light
bulb, uses 60 | of energy every second (when
connected to the appropriate source of voltage).
The energy used by the light bulb over a time of
tsis thus E = 60f ]. In general, for a device of
power rating P the energy used in ! s is

E=Pt

= VIt

Electricity companies find it more convenient
to use a different energy unit by which to
charge consumers. They use the kilowatt-hour
(KW h) as their energy unit, which is defined as
the energy used by a device of power rating

1 kW in 1 h. This means that

1 kWh = 1000W x 60 x 60 s = 3.6 x 10° )

If the cost of 1 kW h is, say, $0.1, then the cost
of operating one 60 W light bulb over a 24 h
period can be calculated as follows:

energy used = 60W x 24h = 1440Wh
=~ 1.4 kWh

Hence
cost = 1.4 x 50.1 = %0.14

Questions

1 QOutline the mechanism by which electric
current heats up the material through which it
flows.

2 Explain why a light bulb is most likely to burn
out when it is first turned on rather than later.

3 State the factors that affect the resistance of a
metal wire.

4 Explain why doubling the length of a wire will
double its resistance.

5 By what factor does the resistance of a wire
change if its radius is doubled?

6 Give an estimate for the number of free
electrons per unit volume for gold (density
19 390 kg m™¥; molar mass 197 g mol™').
Assume that each atom contributes just one
electron to the set of free electrons.

7 Silver has 5.8 x 10°® free electrons per m’. If
the current in a 2 mm radius silver wire is
5.0 A, find the velocity with which the
electrons drift in the wire.

8 (a) If a current of 10.0 A flows through a
heater, how much charge passes through
the heater in 1 h?
{b) How many electrons does this charge
correspond to?

9 The graphs in Figure 4.11 show the current as
a function of voltage across the same piece of
metal wire which is kept at two different
lemperatures.

(a) Does the wire obey Ohm's law?
(b} Which of the two graphs corresponds to
the higher temperature?

Figure 4.11 For question 9.

10 The current in a device obeying Ohm's law is
1.5 A when connected to a source of potential
difference 6.0 V. What will the potential
difference across the same device be when a
current of 3.5 A flows in it?

11 In an experiment the current through and
potential difference across a device were
recorded as shown in Table 4.1, Does the
device obey Ohm’s law?

ImA 50 9.8
V/mV 100

17.2
500

1.5
300

14.0
400

21.2
GO0

200

Table 4.1 For question 11.
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12 A resistor obeying Ohm's law is measured to
have a resistance of 12 @ when a current of
3 A flows in it. What is the resistance when
the current is 4 A?

13 The heating element of an electric kettle has a
current of 15 A when connected to a source of
potential difference 220V. What is its
resistance?

14 The resistance of a fixed length of wire of
circular cross-section is 10.0 £2. What will be
the resistance of a wire of the same length
made of the same material but with only half
the radius?

15 Look at Figure 4.12. The potential at point A is
24 V and a current of 2 A flows in the wire.
(a) What is the potential difference across
each resistor?
(b) Find the potential at points B, C and D.

40 602
I=21A

A B C ]
Figure 4.12 For question 15,

16 Look at Figure 4.13.

{a) Find the current in, and potential
difference across, each resistor. The
potential at Ais 12 V.

{b) What is the potential difference between A
and B?

A
Figure 4.13 For question 16.

17 Aldight bulb is rated as 60 W at 220 V.

{a) How much current flows in the light bulb
if it is connected to a 220 V source of
voltage?

{b) If the light bulb is connected to a 110V
source of voltage, what current flows in it?
(Assume the resistance stays the same.)

{c) What is the power output of the light bulb
when it is connected to the 110 V source?

18 The resistance of a wire of length | and cross-
sectional area A is given by R = p=, where p
is a constant called the resistivity. The filament
of an ordinary 120 W light bulb has a
resistivity of 2.0 = 107* 2 m.

{a) What is its resistance when it is connected
to a source of 220 V{

{b) If the radius of the filament is 0.03 mm,
find its length,

19 Find the energy used when a 1500 W kettle is
used for 4 minutes:
{a) in kW h;

{b) in joules.

20 In the USA the voltage supplied by the
electricity companies is 110 V and in Europe
it is 220 V. Consider a light bulb rated as
60 W at 110 V in the USA and a light bulb
rated as 60 W at 220 V in Europe. Take the
cost of electricity per kW h to be the same.
Where does it cost more to operate a light
bulb for 1 hour?
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Electric circuits

This chapter explains how simple electric circuits can be solved: that is, how the current
through and potential difference acrass resistors can be determined. The chapter begins
with the concept of emf (which stands for electromotive force). The name is
unfortunate, as emf is a potential difference and not a force. Hence, we always use the
initials emf and never the full name. The chapter ends with a look at the potential
divider circuit and sensors that use it.

Objectives

By the end of this chapter you should be able to:

* define emf and explain the role of internal resistance — the potential
difference across a battery is V = £ — /Ir;

* find the total resistance in series and parallel connections using
Row=FRy+ Ra+ - andhl’a-.,;—l+ﬂ—'_‘+---'.

+ [ind the current through, and potential difference across, resistors in
simple circuits;

= find the power dissipated by a resistor in a circuit using P = V1

* describe the potential divider;

= explain the use of sensors in potential divider circuits.

EI'I'If frictional forces are present, work must be

| done by the pump to compensate for the work
Charges will not drift in the same direction . done by these forces. In the absence of the
inside a conductor unless a potential difference | pump, the water flow would stop.

is established at the ends of the conductor. '
There are many ways of providing a source of
potential difference to the circuit. The most
common is the connection of a battery in the
circuit. Others include a generator, a
thermocouple and a photosurface. To understand
the function of the battery, we can use the
standard analogy in which the battery is
likened to a pump that forces water through g
pipes up to a certain height and down again

(see Figure 5.1). The gravitational force does -

work equal to —mgh in lifting a mass m of Figure 5.1 In the at:lrsr:ncc of the pump, the water
o flow would stop. The work done by the pump

water up to the height 1, and work equal to equals the work done to overcome frictional

-+mgh on the way down. The net work done by forces plus work done to operate devices, such

the gravitational force is thus zero. Because as, for example, a paddle wheel.

h paddle wheel

pump
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If, in addition, the water drives a machine to
perform useful work (for example, by turning a
paddle wheel}, then the pump would have to do
work to allow for that as well.

In an electric circuit a battery performs a role
similar to the pump's. A battery converts the
energy it stores (chemical energy) into electrical
energy. The work done by the electrical forces
on a charge that moves in the circuit is zero, |
just as the net work done by gravitational force

in the pump and water system described above

is zero. Similarly, if a generator is used, the

energy that gets converted into electrical

energy is the mechanical energy that turns the
coils of the generator. In the case of the
thermocouple, it is thermal energy. In the case

of the photosurface, it is solar energy.

In a battery, the electrons must be pushed from
the positive to the negative terminal, which
means work must be done on the electrons (see
Figure 5.2).

current .
L

- —
clectrons

Figure 5.2.

This is what we mean by emf:

» In the case of the battery, the ratio of work
done by non-electrical forces, W, toa
‘quantity of charge ¢ that moves from one
terminal of the battery to the otheris
called the emf of the battery. Emf thus has
umits of electric patentia]. ie veim :

E=¢mf=r£

Suppose we connect a voltmeter to the ends of a
battery. We may assign the value of 0V to the
negative terminal of the battery. Then the
positive terminal has a potential equal to the

emf, £. The chemicals inside the battery create a
small resistance r, called the internal resistance
of the cell. We cannot isolate this resistance - it
is inside the battery and we may assume that it
is connected in series to the cell. If the current
that leaves the battery is /, then the potential
difference across the internal resistance is /r. In
other words, the internal resistance reduces the
voltage from a value of £ on its left side to the
value £—/r on the right side. The potential
difference across the battery is therefore

V=£~=Ir

We see that IV = & when { = 0. This gives an
alternative and less precise definition of the
emf: the emf is the potential difference across
the battery when the battery sends out zero
current. (See Figure 5.3.)

BHET
| potential drops by fr

¥

voltage across battery
Figure 5.3 The potential difference across the

battery terminals is less than the emf of the
battery.

Example question

Q'l | e A PRSP =7 7 § sy tL-tac=oua)
A battery of emf 12 V and internal resistance

r =159 produces a current of 3.0 A. What is
the potential difference across the battery
terminals?

Answer

We find

V=E-Ir
=12—3x 1.5
=7.5V

In Figure 5.4, a battery forces a current /into a
circuit that contains a resistor of resistance R.

The connecting wires are assumed to have zero
resistance.
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low potential

Figure 5.4 A battery connected to a circuit. The
current flows into the circuit away from the
positive terminal. This is the conventional
definition of current. The electrons actually
move in the opposite way.

If the emf of the battery in the circuit is 3.0 V
(neglecting its internal resistance) and the
resistance of the circuit is 1.5 £2, the current
can easily be determined. The positive terminal
of the battery may be taken to be 3.0 V and so
the negative terminal must be taken to be at 0V
(to give an emf of 3 V). Thus, the right end of
the resistor is also at 3.0 V. The left end of the
resistor is at 0.0 V and so the potential
difference across the resistor is 3.0 V. Hence, the
current is 2.0 A,

Simple electric circuits

A simple circuit will consist of a single battery
and a number of resistors. When we talk about
solving a circuit, we mean finding the current
through and voltage across every resistor in the
circuit. Here we will develop the methods to do
just that. Table 5.1 shows the circuit symbols
that you need.

Series circuits

First, let us consider a part of a circuit
consisting of a number of resistors connected in
series. This means that the resistors have the
same current through them. An example with
three resistors is shown in Figure 5.5. Let / be
the common current in the three resistors.

I R Ry R
i F—4 )

Figure 5.5 Three resistors in series.

connection lead

-—1 | — cell

battery of cells

|

resisior

power supply

junction of conductors

crossing conductors (no connection)

filament lamp

voltmeter

ammeter

switch

ac supply

galvanometer

hielt Al ) 13

potentiometer

:

- heating element

Table 5.1 Names of electrical components and
their circuit symbaols.

The potential difference across the resistors is

Vi = IRy, Vz:fﬂz and V5 =/FR;

The sum of the potential differences is thus
V =IR'| -I‘-fRz—FIR*,. :f{R] +R2 + Rj.}

If we were to replace the three resistors by a
single resistor of value R, + R + Rs (in other
words, if we were to replace the contents of the
dotted box in Figure 5.5 with a single resistor,
as in the circuit shown in Figure 5.6), we would
not be able to tell the difference. The same
current flows into the dotted box and the same
potential difference exists across its ends, We thus
define the equivalent or total resistance of the
three resistors of Figure 5.5 by

Rtot.ll =R|+R2+R3
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(If more than three were present, we would
simply add all of them. The formula shows that
the total resistance is larger than the individual
ones being added.)

In a circuit, the combination of resistors of
Figure 5.5 is equivalent to the single total or
equivalent resistor. Suppose we now connect the
three resistors to a battery of negligible internal
resistance and emf{ equal to 24 V. Suppose that
Ry =2, R; =62 and R; = 4 Q. The circuit is
shown in the top diagram of Figure 5.6. Note
that we know that the potential at point A is

24V and at point B it is 0 V. (We do not know the
potential difference across any of the three
resistors individually.) In the bottom diagram,
we have replaced the three resistors by the
equivalent resistor of Ry =2+ 6 + 4= 12Q.
We now observe that the potential difference
across the equivalent resistor is known. It is
simply 24 V and hence the current through the
equivalent resistor is found as follows:

R —
I

¥
= = = =2A
R

12
This current, therefore, is also the current that
enters the dotted box: that is, it is the current
in each of the three resistors of the original
circuit. We may thus deduce that the potential
differences across the three resistors are

V) =IR, =4V
Vo =1IRy =12V
Vi=IRs =8V
;iR B '
— ] — — el
Ab B
24V|, 0V
' R
! Rioual

=

24V|, 0V
|I

Figure 5.6 The top circuit is replaced by the
equivalent circuit containing just one resistor.

Suppose now that we cannot neglect the
internal resistance of the battery. The internal
resistance is connected in series to the other
resistances and so, if its value isr = 1.0, the
total circuit resistance is 1 +2 +6+4 =134,
The current leaving the battery is thus
% = 1.85 A. The potential difference across the
battery terminals is
Vi=E-—-1IF
=24 -185x1
=2215V

which is less than the emf, as we expected.

Parallel circuits

Consider now part of another circuit, in which
the current splits into three other currents that
flow in three resistors, as shown in Figure 5.7.
The current that enters the junction at A must
equal the current that leaves the junction, by
the law of conservation of charge. Furthermore,
we note that the left ends of the three resistors
are at the same potential ({the potential at A)
and the right ends are all at the potential of B.
Hence, the three resistors have the same
potential difference across them. This is called a
parallel connection.

------------------

Figure 5.7 Three resistors connected in parallel.
We must then have that
I=h+6L+5

Let V be the common potential difference
across the resistors. Then

11_% f_’g:% and é:;—:
and so
tm g VgV
Ry Rz Rs
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. ____________________________________ 1.

If we replace the three resistors in the dotted
box with a single resistor, the potential
difference across it would be V' and the current
through it would be /. Thus

V
RIU[&“

Tz

Comparing with the last equation, we find

1 + I " 1

Rl:ul.rl B R] RE Ri
The formula shows that the total resistance is
smaller than any of the lndmdual resistances

being added.

b We have thus learned how to replace
- resistors that are connected in series
(same current) or parallel (same pu:gnt:al
- dﬂerenceamss]byasmglemmmrm
each case, thusgreatlgsimplxliangthe

‘circuit.

A typical circuit will contain both series and
parallel connections. In Figure 5.8, the two top
resistors are in series. They are equivalent to a
single resistor of 12 £2. This resistor and the 6
resistor are in parallel, so together they are
equivalent to a single resistor of

1 1 1

1
Row 1276 3

== Rluhﬂ =40
: , 120
S LR S -
1 -}
o0 1 40

Figure 5.8 Part of a circuit with both series and
parallel connections.

Consider now Figure 5.9. The two top 6 £
resistors are in series, so they are equivalent to
a 12 £2 resistor. This, in turn, is in parallel with

the other 6 £2 resistor, so the left block is
equivalent to
| 1 1 1
e B4
= R =422

Let us go to the right block. The 12 £ and the

24 Q resistors are in series, so they are equivalent
to 36 £2. This is in parallel with the top 12 £2, so
the equivalent resistor of the right block is

1 1 1 1

Riota T i 129
= Riotg =92

The overall resistance is thus
4+9=13Q

40 913 130
— ’
Figure 5.9 A complicated part of a circuit

containing many parallel and series
connections.

Suppose now that this part of the circuit is
connected to a source of emf 156 V (and
negligible internal resistance). The current that
leaves the source is /= & = 12 A, When it
arrives at point A, it w1]1 sphl into two parts. Let
the current in the top part be /; and that in the
bottom part f;. We have /) + L = 12 A. We also
have that 12/, = 6/, since the top and bottom
resistors of the block beginning at point A are
in parallel and so have the same potential
difference across them, Thus, /; =4 A and

L = 8 A. Similarly, in the block beginning at
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point B the top current is 9 A and the bottom
current is 3 A.

Example questions

(1! ST T I L TN e e B
Find the total resistance in each of the circuits
shown in Figure 5.10.,

i
200 ks
|
Ry 1.80
{2) EXIT]
L Ry
400 10,042
Ry Ry
(h) 4,08 10,042
Figure 5.10.

Answer

{a) R, and R, are in parallel, so together they are
equivalent to a resistor R where

|
%2030
5.0
" 50
ﬂR—E
5.0
= 1.25

Now, this R is in series with R,, so together
they are equivalent to

R = (1.2 4 1.8) 2
=308

{b) R, and R, are in parallel, so together they are
equivalent to a resistor K where

" 1
4.0

I
-
|*".::c:-

Isd
[‘jﬂ
=]

= R

[
[
Qo

Similarly, R, and R, are in parallel so they are
equivalent to a resistor of 5.0 2, The 2.02
and 5.0 are in series, so the overall total is
7082

()3 EifiETEIEErT T VES T SIS I ETIETIOYN TN
What is the total current in the circuit in
Figure 5.117

Figure 5.11.

Answer

The emf of the battery is 12 V. The total resistance
of the circuit is 2.0 + 4.0 = 6.0£2. Thus, the total
current is

'Q““ EI T it s s P I ST T Tt TR el
What is the potential difference across each
resistor in Example question 37

Answer

The current through the 2.0 2 resistor is 2.0 A, so
the potential difference across it is RI = 4.0 V.
Across the other resistor it is BRI = 4.0x 20V =
8.0 V. Note that the sum of the potential difierences
across each resistor adds up to the emf of the
battery.

QE ST P s e Ry T reg sy B R L
Find the current in each of the resistors in the
circuit shown in Figure 5.12.

2083
130

300

6.0V |l

Figure 5.12.
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Answer

The resistors of 2.0 and 3.0 2 are connected in
parallel and are equivalent to a single resistor of
resistance R found from

==
lad | ==

!
m
| L ha | -

= w| o

280

In turn, this is in series with the resistance of

1.8 2, so the total equivalent circuit resistance is
1.8 + 1.2 = 3.0 2. The current that leaves the
battery is thus

/- 69
3.0
=2.0A

The potential difference across the 1.8 2 resistor is
thus V = 1.8 x 2.0 = 3.6 V, leading to a potential
difference across the two parallel resistors of

V = 6.0 — 3.6 = 2.4 V. Thus the current in the

2 §2 resistor is '

2.4
f=—

2.0
= 1.2A

and in the 3 &2 resistor is

bl

A

0
BOA

I

I

[
(=R

As a check, we see that 1.2 + 0,80 = 2.0 A, as it
should be,

Oh ST ST ST TR I A SR E S8
Find the current in each resistor in the circuit in
Figure 5.13.

__|2a0v

Figure 5.13.

Answer

The voltage across the 4.0 © resistor is 24.0 V and
thus the current is 6.0 A. The voltage is 24.0 V
acrass the other resistor as well, and so the
current through it is 4.0 A. The current leaving the
battery is 10.0 A.

Q? AT i L Y R YT S TR AT
Look at Figure 5.14. What is the potential
difference between A and B? What is the current
leaving the battery?

——24V 400

Figure 5.14,

Answer

The potential difference is 24 V for all resistors.
The currents in the resistors are 8 A, 6 A and 4 A,
respectively, The total current is thus 18 A,

0 T e I PSS S TE Y LT IR L S
Look at Figure 5.15. What is the current in the

2.0 22 resistor when the switch is open and when
the switch is closed? What is the potential
difference across the two marked points, A and B,
when the switch is open and when the switch is
closed?

2,00 4,00
—_——l  }——
I—O\: 4 'ﬂﬂ .
A 5 B

12.0V
I
1I
Figure 5.15.
Answer

When the switch is open, the total resistance is
4.0 22 and thus the total current is 3.0 A. This is
the current through the 2.0 @ resistor, The
potential at A is 12 V. The potential difference
across the 2.0 2 resistor is 2 x 3 = 6V and so the
potential at its right end, and hence at B, is 6 V.
The potential difference across points A and B is
thus 6 V.
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When the switch is closed, no current flows
through the 2.0 22 resistor, since all the current
takes the path through the switch, which offers no
resistance, (The 2.0  resistor has been shorted
out.) The resistance of the circuit is then 2.0 and
the current leaving the baltery is 6 A. The
potential difference across points A and B is now
zero. There is current flowing from A to B, but the
resistance from A to B is zero. Hence the potential
difference isb x 0 =0V,

T T T e e e e R ]
Four light bulbs each of constant resistance 60 2
are connected as shown in Figure 5.16. Find the
power in each light bulb. If light bulb A burns out,
find the power in each light bulb and the potential
difference across the burned-out light bulb.

6002 v

f
!
Figure 5.16.

Answer

A and B are connected in series so they are
equivalent to one resistor of value

R =60+ 60 = 120 2. This is connected in
parallel to C, giving a total resistance of

|

1 i 1
R 60

bt
(=]

1

T a0
= R=408
Finally, this is in series with D, giving a total
circuit resistance of R = 40 + 60 = 100 €. The
current leaving the battery is thus /= 2L = 0.3 A.
The current through A and B is 0.1 A and that
through C is 0.2 A. The current through D is
0.3 A. Hence the power in each light bulb is

Fn=Fy
= 60 = (0.1
=0.6W

Pe = 60 x (0.2)°
= 24W

Py = 60 x (0.3)*
=54W

With light bulb A burnt out, the circuit is as
shown in Figure 5.17.

Figure 5.17.

Light bulb B gets no current, so we are left with
only C and D connected in series, giving a total
resistance of R = 60 + 60 = 120 Q. The current is
thus I = 0.25 A. The power in C and D is thus

Fe=Fy
= 60 = (0.25)°
=3.75W

We see that D becomes dimmer and C brighter.
The potential at point a is 30 V. The potential
difference across light bulb C is

V=IR
=0.25 = 60
=15V

and so the potential at the right end of Cis 15 V.
Light bulb B takes no current, so the potential
difference across it is zero, Thus, the potential at
point b is also 15 V. The potential difference
across points a and b is therefore 15 V.

Ammeters and voltmeters

The current through a resistor is measured by
an instrument called an ammeter, which is
connected in series to the resistor as shown in
Figure 5.18.

Figure 5.18 An ammeter measures the current in
the resistor connected in series to it.
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The ammeter itself has a small electric
resistance. However, an ideal ammeter has zero
resistance and throughout this book we are
assuming that we are dealing with ideal
ammeters.

Example question
Q10 sassnsa S IrTTFETENTIET ST

How are the readings of the ammeters of
Figure 5.18 related?

Answer
L=h+ 14

The potential difference across the ends of a
resistor is measured by a voltmeter, which is
connected in parallel to the resistor, as shown
in Figure 5.19.

R, R,

Figure 5.19 A voltmeter measures the potential
difference across a resistor it is connected in
parallel to,

Thus, to measure the potential difference
across and current through a resistor, the
arrangement shown in Figure 5.20 is used.

variable
resistor

v

Figure 5.20 The correct arrangement for
measuring the current through and potential
difference across a resistor, The variable resistor
allows the current in the resistor B to be varied.

An ideal voltmeter has infinite resistance (in practice
about 50000 2}, which means that it takes no
current when it is connected to a resistor.

nplementary material

Voltmeters and ammeters are both based on a
current sensor called a galvanometer. An ammeter
has a small resistance connected in parallel to the
galvanometer and a voltmeter is a galvanometer
connected 1o a large resistance in series.

Example question

(711 Frrmsymrsses SRSV SE TR e
In the circuit in Figure 5.21, the emf of the battery is
9.00 V and the internal resistance is assumed
negligible. A voltmeter whose resistance is 500 Q is
connected in parallel to a resistor of 500 £, What is
the reading of the ammeter? If we assume that the
current registered by the ammeter actually flows
into the resistor, what value of the resistance would
we measure? Repeal this calculation, this time
assumning that the voltmeter's resistance is 5000 €.

F_R—1
(2
Figure 5.21.

Answer

The total resistance of the circuit is 250 £2 and so
the current that leaves the battery is 36,0 mA. If
this current is assumed to flow in the resistor, the
resistance would be measured as % = 250 Q.
With the higher voltmeter resistance, the total
circuit resistance is 454.5 ©. The current flowing
is then 2% = 19.8 mA. If we assume all of this
current goes into the resistance, the resistance
waould be measured as 454.5 . In other words,
what the experimental arrangement actually
measures is not the resistance of the resistor R but
the total resistance of R and the voltmeter’s
resistance, The higher the voltmeter resistance,
the closer the total is to R.
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Sensors based on the potential
divider

The potential divider

The circuit in Figure 5.22(a) shows a potential
divider. It can be used to investigate, for example,
the current-voltage characteristic of some device
denoted by resistance R. This complicated-
looking circuit is simply equivalent to the circuit
in Figure 5.22(b). In this circuit, the resistance R,
is the resistance of the variable resistor XY from
end X to the slider S, and R» is the resistance of
the variable resistor from S to end Y. The current
that leaves the battery splits at point M. Part of
the current goes from M to N, and the rest goes
into the device with resistance K. The right end
of the resistance R can be connected to a point S
on the variable resistor XY.

i)

Figure 5.22 (a) This circuit uses a potential divider.
The voltage and current in the device with
resistance R can be varied by varying the point
where the slider S is attached to the variable
resistor. (b) The potential divider circuit is
equivalent to this simplerlooking circuit.

By varying where the slider S connects to XY,
different potential differences and currents are
obtained for the device R. The variable resistor
XY could also be just a wire of uniform

diameter. One advantage of the potential
divider over the conventional circuit
arrangement (Figure 5.20) is that now the
potential difference across the resistor can be
varied from a minimum of zero volts, when the
slider S is placed at X, to a maximum of £, the
emf of the battery (assuming zero internal
resistance), by connecting the slider S to point
Y. In the conventional arrangement of Figure
5.20, the voltage can be varied from zero volts
up to some maximum value less than the emf.

Example question

12 r=assssw———ssateeare i
In the circuit in Figure 5.23, the battery has emf £
and negligible internal resistance. Derive an
expression for the potential difference V across
resistor Ky,

| £
||
R, Ry
Figure 5.23.
Answer
Since V= IR, and /= -£

Py
we have that

R

V= —&
Rt R

Using sensors

This section includes a use of a particular
sensor, a light-dependent resistor in a circuit.
Other examples using the potential divider
circuit discussed earlier can also be used with
various other types of sensor, for example strain
gauges and temperature-dependent resistors. A
few examples are given in the questions at the
end of the chapter.

Consider the circuit in Figure 5.24 that contains
a light-dependent resistor (LDR). An LDR is a
resistor whose resistance decreases as the light
falling on the resistor increases. Typically, the
resistance is 100 £2 in bright light and more than
1.0 M£2 in the dark. A voltmeter is connected
across the LDR. Because the resistance of the LDR
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Figure 5.24 A light-dependent resistor in a |
potential divider circuit,

changes with varying intensity of incident light,
the reading of the voltmeter across the LDR also
changes as in a potential divider circuit.

The reading of the voltmeter across the LDR is

~ Rum
= m » 9.0 volts

Assume that the LDR has a resistance of 900 k&2

when dark and 100 © when bright. With a fixed
resistor of resistance R = 500 k€2, the reading of
the voltmeter is then:

« Dark

B 900 » 10°
T 900 = 10° 4+ 500 x 10°
= 5.8 volis

IV % 9.0 volts

= Bright

100
= 1007500 x 105 < 0 volts !

= 1.8 x 10 %volts

V

The reading of the voltmeter is a measure of the
illumination of the LDR and can therefore be
used as a light sensor. A high value means the
LDR is dark, and a very small value means the
LDR is bright.

To have a sensitive sensor, we would like to have
as large a difference as possible in the readings
of the voltmeter for a dark and a bright LDR.
This depends on the particular value of the fixed
resistor chosen in relation to the dark and bright
resistances of the LDR. Using your graphics
calculator, you should be able to show that, with
the numbers used here, the value of R resulting
in the largest difference in the dark and bright
readings of the voltmeter is about 9.5 k.

Supplementary material

The mathematically inclined should be able to
show that the value of R resulting in the largest
possible difference in the dark and bright
readings of the voltmeter equals R = R R,
where Ky and Ry are the resistances of the LDR
in the dark and bright.

1 Find the total resistance for each of the circuit
parts in Figure 5.25.

] 3052
— -— W 30047
] BOG 3004 —

2001
200 200 4040

Figure 5.25 For question 1.

2 What is the resistance between A and B in
Figure 5.267

1000 £2 20,00

[00L2

20,00
Figure 526 For question 2.

10062

3 Each resistor in Figure 5.27 has a value of
6,0 2. Calculate the resistance of the
combination,

Figure 5.27 For question 3.

4 You are given one hundred 18 resistors. What
is the smallest and largest resistance you can
make in a circuit using these?
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5 A wire that has resistance R is cut into two

equal pieces. The two parts are joined in
parallel. What is the resistance of the
combination?

Find the current in, and potential difference

across, each resistor in the circuits shown in
Figure 5.28.

l_ .
il
E= 120V
wnl] =2 oa m:un[]
£=60V
r=2.012 -
200

[N

'?1- 4000

4.0:1[

Figure 5.28 For question 6.

A battery has emf = 10.0 V and internal
resistance 2.0 ©2. The battery is connected in
series to a resistance R. Make a table of the
power dissipated in R for various values of R
and then use your table to plot the power as a
function of R. For what value of R is the
power dissipated maximum?

Six light bulbs, each of constant resistance

3.0 &2, are connected in parallel to a battery of
emf = 9.0 V and negligible internal

resistance. The brightness of a light bulb is
proportional to the power dissipated in it.
Compare the brightness of one light bulb
when all six are on, to that when only five are
on, the sixth having burned out.

A toaster is rated as 1200 W and a mixer as

500 W, both at 220 V.

{a) If both appliances are connected (in
parallel) to a 220 V source, what current
does each appliance draw?

(b) How much energy do these appliances
use if both work for one_hour?

10 Find the current in each of the resistors in the

11

12

13

14

circuit shown in Figure 5.29. What is the total
power dissipated in the circuit?

i} I
60.0 L2 51040

-|F 40,08 2000

r=3040 0.0 0
Figure 5.29 For question 10.

An electric kettle rated as 2000 W at 220 V is
used to warm 2.0 L of water from 15°C to
90-C.

{a) How much current flows in the kettle?

{b) What is the resistance of the kettle?

{c) How long does it take to warm the water?
(Specific heat capacity of water = 4200
Jkg' K1)

{d) How much does this cost if the power
company charges $0.10 per kW h?

One light bulb is rated as 60 W at 220 V and

another as 75 W at 220 V.

{a) If both of these are connected in parallel
to a 110 V source, find the current in each
light bulb., (Assume that the resistances of
the light bulbs are constant.)

(b) Would it cost more or less (and by how
much} to run these two light bulbs
connected in parallel to a 110V or a
220V source?

Three appliances are connected (in parallel) to
the same outlet, which provides a voltage of
220 V. A fuse connected to the outlet will
blow if the current drawn from the outlet
exceeds 10 A. If the three appliances are rated
as 60 W, 500 W and 1200 W at 220 V, will
the fuse blow?

An electric kettle rated as 1200 W at 220 V
and a toaster rated at 1000 W at 220 V are
both connected in parallel to a source of

220 V. If the fuse connected to the source
blows when the current exceeds 9.0 A, can
both appliances be used at the same time!?
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15 The graph in Figure 5.30a shows the
temperature dependence of a special resistor
R. The resistance drops with increasing
lemperature,

RikE2
1060

-
*

(a)

10.0V
20kL2

(b)

Figure 5.30 For question 15.

{a) Estimate the resistance of this resistor at
20°C.

{b) If this resistor is connected in a circuit as
shown in Figure 5.30b, find the current
in the resistor when the temperature is
20°C.

16 The temperature-dependent resistor of
question 15 is connected in a circuit to a lamp
of resistance 10 kS2 as shown in Figure 5.31.
What will happen to the brightness of the
lamp if the temperature of the room increases
from 20°C to 30°C?

in —
T R R=10kQ

Figure 531 For question 16.

17 A clothes dryer operates at 220 V and draws a

current of 20.0 A,

{a) What is the power of the machine?

(b} If the dryer is filled with wet clothes that
contain 2.0 kg of water at 40°C, how long
will it take ta dry them? (The specific heat
capacity of water is 4200 | kg™' K" and
the specific latent heat of vaporization of
water is 2257 k) kg™'.) Ignore any heat
absorbed by the clothes themselves.

18 In the potentiometer in Figure 5.32 wire AB is
uniform and has a length of 1.00 m. When
cantact is made at C with BC = 54.0 cm, the
galvanometer G shows zero current. What is
the emf of the second cell?

B

-

Figure 5.32 For question 18,

19 Two light bulbs are rated as 60 W and 75 W
at 220 V. If these are connected in series to a
source of 220 V, what will the power in each
be? Assume a constant resistance for the light
bulbs.

20 At a given time a home is supplied with
100.0 A at 220 V. How many 75 W (rated at
220 V) light bulbs could be on in the house at
that time, assuming they are all connected in
parallel?

21 (a) What is the reading of the voltmeter in the
circuit shown in Figure 5.33 if both
resistances are 200 2 and the voltmeter
also has a resistance of 200 7

{(b) What is the reading of the ammeter?

ic) If the voltmeter was ideal, what would
the readings of the voltmeter and
ammeler be?
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| 25 (a) Determine the potential difference across
| 120V each resistor in the circuit in Figure 5.36.
{b) A voltmeter of resistance 2 k2 is connected
in parallel across the 3 k2 resistor. What is

the reading of the voltmeter?

R
R
—
E=15V
Iy
L]
) |
Figure 5.33 For question 21.
" 4 | JkQ2 k2
1

22 For the circuit shown in Figure 5.34, find the

Figure 5.36 For question 25,
current taken from the supply.

26 A battery of emf £ and internal resistance r

| £=120v sends a current J into a circuit.
|= {a) Sketch the potential difference across the
oLk battery as a function of the current.
e 200 (b} What is the significance of (i) the slope
ii i inte i ¢
1 and (ii) the vertical intercept of the graph?
1262 120 £1
— 1 HL only
Figure 5.34 For question 22. 27 Each resistor in the circuit shown in
Figure 5.37 has value R and the circuit
23 A direct current supply of constant emf 12.0 V extends to the right forever. Find the total
and internal resistance 0.50 £2 is connected to resistanice between A and B.

a load of constant resistance 8.0 Q. Find (a)
the power dissipated in the load resistance
and (b) the energy lost in the internal
resistance in 10 min.

B
Figure 5.37 For question 27.

24 Consider the circuit in Figure 5.35, where A, B
and C are three identical light bulbs of

constant resistance. The battery has negligible 28 Twelve 1.0 22 resistors are placed on the

internal resistance. edges of a cube and connected to a 5.0 V
{a} Order the light bulbs in order of increasing battery, as shown'in Figure 5.38, What is the
brightness. current leaving the battery?
{b) If C burns out, what will be the brightness
of A now compared with before? —T—
{c) If B burns out instead, what will be the
brightness of A and C compared with | [
before? |

C ® I. E=s50V
! !
| Figure 538 For question 28.
Figure 5.35 For question 24.
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29

30

31

Two identical lamps, each of constant
resistance R, are connected as shown in the
circuit on the left in Figure 5.39. A third
identical lamp is connected in parallel to the
other two.

||
emf £ i

Figure 5.39 For question 29,

Compare the brightness of lamp A in the
original circuit (left) with its brightness in the
circuit with three lamps (right), when
{a) the battery has no internal resistance,
and
{b) the battery has an internal resistance equal
to K.
A device D, of constant resistance, operates
properly when the potential difference across
it is 8.0 V and the current through it is 2.0 A,
The device is connected in the circuit shown
in Figure 5.40, in series with an unknown
resistance K. Calculate the value of the
resistance K. (The battery has negligible
internal resistance.)

emf 12V

I_

D

Figure 540 For question 30.

The three devices in the circuit in Figure 5.41
are identical and have constant resistance.
Each dissipates power P when the potential
difference across it is £. (The battery has
negligible internal resistance.)

32

33

34

emf £

33
Figure 5.41 For question 31.

Calculate the total power dissipated in the
circuit when

{a} 5, is closed and S, is open;

ib) 5 is closed and 5; is closed;

(c) Sy is open and S, is open;

{d) 5 is open and S, is closed.

Two identical lamps are connecled to a
battery of emf 12 V and negligible internal
resistance, as shown in Figure 5.42. Calculate
the reading of the (icdeal) voltmeter when lamp
B burns out.

A B
Figure 542 For question 32.

State the reading of the ideal voltmeter in the
circuit in Figure 5.43.

60V

l_

Figure 5.43 For question 33.

In an experiment, a voltmeter was connected
across the terminals of a battery as shown in
Figure 5.44.
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Figure 5.44 For question 34,

The current in the circuit is varied using the
variable resistor. The graph in Figure 5.45
shows the variation with current of the
reading of the voltmeter.

m?. \ | l_ A
| H B ;ﬁ. rtH
o

(2]
I
T

0 2 4 6 8
Figure 5.45 For question 34.

')

* [ A
10

{a) Calculate the internal resistance of the
battery.
{b} Calculate the emf of the battery.

35 Two resistors are connected in series as shown

in Figure 5.46. The battery has negligible
internal resistance. Resistor R has a constant
resistance of 1.5 Q.

R X

Figure 546 For question 35.

The current—valtage (I-V) characteristic of
resistance X is shown in Figure 5.47,

0.4

0.2

i 'l 1 i i -1

0

= ViV
1 2 3 4

Figure 5.47 For question 35.

36

37

A
&
35¢

The potential difference across resistor R is
1.2 V. Calculate the emf of the battery.

When two resistors, each of resistance 4.0 £,
are connected in parallel with a battery, the
current leaving the battery is 3.0 A. When the
same two resistors are connected in series
with the battery, the total current in the circuit
is 1.4 A. Calculate

{a) the emf of the battery;

{b) the internal resistance of the battery.

Two resistors, X and Y, have [-V
characteristics given by the graph in

Figure 5.48.

a0

2.5

20

L5

1.0

SR LA AL RBEREE B

0.5

T

1 - IR - | o L |

0

0.5

Figure 5.48 For question 37,

{a) The resistors X and ¥ are connected in
parallel to a battery of emf 1.5 V and
negligible internal resistance, as shown in
Figure 5.4%(a). Calculate the total current
leaving the battery.
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38

39

{a) [13]]

Figure 5.49 For question 37.

{b) In Figure 5.49(b) the resistors X and Y are
connected in series. Estimate the total
current leaving the battery in this circuit.

The circuit in Figure 5.50 contains a positive
temperature coefficient (PTC) resistor whose
resistance increases with increasing
temperature, and a negative temperature
coefficient (NTC) resistor whose resistance
decreases with increasing temperature.

emf £
PTC
B NTC

Figure 5.50 For question 38,

At room temperature the lamps (which are
identical) are equally bright. Determine the
changes, if any, in the brightness of lamps A
and B when the temperature is increased. (The
battery has negligible internal resistance.)

Figure 5.51 shows an NTC resistor (the
resistance decreases with increasing
temperature} in a circuit,

250

— NTC
resistor

Figure 5.51 For question 39.

=
=
-

!

Figure 5.52 shows the variation with
temperature T of the resistance of the NTC
resistor,

Figure 5.52 For question 39.

{a) State the resistance of the NTC resistor at a
temperature of 25°C.

Deduce that the reading of the voltmeter,
in volts, is given by

_ 9.0 % RN]I’_
" Ruie+25

ib

where Ry is the resistance of the NTC
resistor in ohms.,

Calculate the reading of the (ideal)
voltmeter at 25°C.

The NTC resistor may be used as a
temperature sensor. Describe how this
circuit may be used to measure the
temperature to which the NTC resistor is
exposed.

——

c

(d

40 (a) Calculate the potential difference
between points A and B in the circuit in
Figure 5.53. (The battery has negligible
internal resistance.)

0V

#
1
1

i) 2

A B
Figure 5.53 For question 40.

o0 £2

A lamp of constant resistance operates at
normal brightness when the potential
difference across it is 4.0 V and the
current through it is 0.20 A. To light up the
lamp, a student uses the circuit shown in
Figure 5.54.
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ov under stress is 100 ©2. The emf of the battery is
6.00 V. (The battery has negligible internal
resistance.)

600 60 Q2 |y 600V
I j—< ]l
100 £2 100 £2
Figure 5.54 For question 40. F—r— —
]
—hAN—s

(b) Calculate the resistance of the light bulb at

normal brightness. ( )
(c) Calculate the potential difference across Figure 5.55 For question 41.

the light bulb in the circuit in Figure 5.54.
{d) Calculate the current through the light (a) Calculate the reading of the voltmeter

bulb. when the strain gauge S is not under stress.
(e) Hence explain why the light bulb will not | {(b) When the strain gauge is under a certain

light. ‘ load, its resistance increases to 110 Q.

41 The circuit in Figure 5.55 contains a strain Calculate the reading of the voltmeter

gauge, S. The resistance of 5 when it is not now.
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We have all observed with fascination how magnets attract or repel each other and we
are familiar with compasses, which align with the magnetic field of the earth (a fact that
has been used for navigation for hundreds of years). But it was only in 1820 that
scientists began to understand the cause of magnetism, when the Danish scientist
H. C. Orsted discovered that a wire in which electric current was flowing influenced a
magnetic needle placed near the wire. It was thus discovered that the origin of
magnetism is electrical. The magnetic field of the earth is presumably caused by moving
charges in the interior of the earth and the magnetic field of an iron bar magnet is
cavsed by the motion of electrons in the atoms of the iron. Thus, electric currents cause
forces on magnets and, as we will see in this chapter, magnets cause forces on electric
currents as well - a result that we might expect from Newton's third law.

Objectives

By the end of this chapter you should be able to:

* understand the meaning of magnetic field and find its magnitude and

direction in simple 5jruatic:rns involving straight-line conductors (B = £2)
“) using the right-hand rule where appropriate;

and solenoids (B = ,ua

r

* find the force on moving charges (F = qvB sin #) and currents (F =B/l sin d)
in magnetic fields and appreciate the definition of the ampere as a
fundamental SI unit, using the right-hand rule for forces where
appropriate.

Magnetic field

In the chapters on electricity, it was useful to
introduce the concept of an electric field. A
charge creates an electric field around itself
and any other charge that enters this electric
field will experience, as a result, an electric
force. The same idea can be extended to
magnetism. Both magnets and electric
currents create magnetic fields around
themselves and when another magnet or
electric current (or moving charge in general)

enters this magnetic field it will experience a
magnetic force. The magnetic field is a vector
quantity just like the electric field - it has
magnitude and direction.

The direction of the magnetic field

The magnetic field direction is determined by
the effect it has on a compass needle (i.e. a
small bar magnet), as shown in Figure 6.1. A
magnetic needle aligns itself in the direction of
the magnetic field vector.
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tovward
t geographic north

M

8

if O the magnetic field is——

if O the magnetic field 15

Figure 6.1 A magnetic needle is a small bar magnet
whose north pole points in the direction of the
geographic north pole of the earth. In the
presence of another strong magnet, the needle
will align itself with the magnetic field.

(a) (b)

Figure 6.2 (a) The magnetic field lines of a bar
magnet. The field is strongest near the poles of
the magnet where the lines crowd together,

(b} A uniform magnetic field is obtained if two
opposite poles are placed near each other.

501 iron

current

Figure 6.3 The magnetic field lines of a solenoid.
The field is fairly uniform in the interior of the
coil, Outside it resembles that-of a bar magnet.

Magnetic field lines

Just like electric field lines, magnetic field lines
are defined as imaginary lines around magnets
and currents, tangents to which give the
direction of the magnetic field. The magnetic
field lines of permanent magnets and the

field created by a solenoid (a coil of wire in
which electric current flows) are shown in
Figures 6.2 and 6.3.

In Figure 6.3, current is flowing in a solenoid
and a magnetic field is created inside and
outside the solenoid. The current is flowing in
the clockwise direction if we look along the axis
of the solenoid from right to left.

The magnetic field of a single loop of wire in
which current flows is somewhat more
complicated and is shown in
Figure 6.4. In the right-hand
diagram, we are looking at
the loop ‘from above’; the
crosses indicate that the
magnetic field is directed
into the page while the dots
indicate a magnetic field
coming out of the page.

Figure 6.5 shows the magnetic field lines of a
long straight wire. In Figure 6.5a, the current is
coming out of the page. The magnetic field
lines are circles centred at the wire. In Figure
6.5b, the current goes into the page.
Remember that the magnetic field
direction is tangent to the magnetic
field lines and the arrows on the
lines tell us which tangent to take.

The magnetic field of the earth
resembles that of a bar magnet
except that the bar magnet does
not coincide with the line through
the geographic north and south
poles of the earth.

The direction of the magnetic field
caused by a given current (a few
examples of which we have seen in
this section) is given by a right-hand
rule, which we will describe later.
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Figure 6.4 The magnetic field lines of a single
turn of wire. In the plane of the loop the
magnetic field is going into the page inside the
loop and out of the page outside the loop. The
current in the loop is flowing in the clockwise
direction.
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{a) (b
curment

{c)
Figure 6.5 Magnetic field lines for straight current
wires. The magnetic field magnitude is largest

near the wire.

Example question

()] TEErmsTsrre e T T S SRS SR ITIII T
A magnetic monopole is a particle that is a pure
north or pure south magnetic pole. (These are
predicted to exist by modern theories of
elementary particle physics but none have been
found.) Suppose that a south magnetic monopole
is placed at various positions in the vicinity of a
bar magnet, as shown in Figure 6.6. Draw the

force experienced by the monopole at the
positions shown,

Answer

The force on a north monopole would be in the
same direction as the magnetic field direction at
the position of the monopole. The force on a south
monopole would be opposite to the direction of
the magnetic field. Thus, the forces on the south
monopole are as shown in Figure 6.7,

The magnetic force on a current

If a current is placed in a region of magnetic
field, it will experience a magnetic force. In
Figure 6.8 a magnetic field is established out of
the page and a wire carries a current from left
to right, perpendicular to the magnetic field.
The magnitude of the force is proportional to
the current /, the magnetic field magnitude B
and the length | of the wire that is in the
magnetic field.

L

PPOOOOO®®® e

IONONONONO] [ORCRONONO,

the magnetic ficld is out
of the page

force

Figure 6.8 A current in a magnetic field
experiences a magnetic force. The force is on
that part of the wire that is in the magnetic
field.
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Mathematically

F o BIL
= F =KkBIL

where K is a constant of proportionality. This
constant can be made to equal one by proper
choice of the unit of magnetic field. We can
make k = 1 by saying that when the force on
1 m of wire carrying a current of 1 Ais 1 N,
then the magnitude of the magnetic field is
defined tobe 1 tesla(so 1 T=1NA"m™). So
the force on the current-carrying wire 1s

F =8Il

Remember, though, that the magnetic field was
at right angles to the wire, If there is an angle
between them then:

» The force on a length | of the wire is given
e e
F =BiLsiné
where 6 is the angle between the current
and the direction of the magnetic field

magnetic field into page
PEIERREEE
Beseese Ehﬁ—i-
Figure 6.9 The force on a current-carrying wire in
a magnetic field is normal to the plane
containing the field and the current. If the ends
of the wire are kept fixed, the wire will bend.

The formula above gives the magnitude of the
force on the wire. The direction of the magnetic
force is always normal to both the current and
the magnetic field: that is, it is normal to the
plane containing the current and the magnetic
field vectors (see Figure 6.9). To find this direction
we use a right-hand rule for force which says:

» Using the right hand place the thumb in
the direction of the current and the fingers
in the direction of the magnetic field.

The direction away from the palm is the
direction of the magnetir: fnrce (See
Figtire 6, m}

...............

current o

— 110

palm -~
P

Figure 6.10 The magnetic force on a current is
normal to both the magnetic field and the
current direction. Its direction is given by a
right-hand rule for force.

supplementary material

Those familiar with the vector product of two
vectors may recognize that the equation for the
magnetic force is

Fe= f}.: ® E

This equation correctly gives the magnitude as
well as the direction of the force.

The magnetic force on a
moving charge

An electric current that is in a magnetic field will
experience a force as we just saw. But an electric
current is just moving charges, so a moving
charge will experience a magnetic force as well.

Consider a positive charge ¢ that moves with
speed v to the right. In time Al the charge will
move a distance [ = v Al. The current created
by this charge is /= %, so the force on this
current is

F =B/l sin#

I
Al sind
ﬂf

=qvBsing

b A charge ¢ moving with speed v in a
magnetic field of magnitude B will
experience a force F given by

F =qvBsing
where # is the angle between the direction
of the velocity and the magnetic field. (See
Figure 6.11.)
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Towee
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Figure 6.11 An electric charge moving in a
magnetic field experiences a magnetic force.
The charge shown is positive. The right hand is
placed palm up on the page with the thumb
pointing in the direction of the velocity and the
fingers pointing in the direction of the
magnetic field. The direction away from the
palm (i.e. out of the page) is the direction of the
force on a positive charge. ;

This implies that the magnetic force is zero if
the charge moves parallel or antiparallel to the
magnetic field. There is also no magnetic force
if the charge is not moving. This is to be
contrasted with the electric force on a charge,
which is always non-zero irrespective of
whether the charge moves or not. The magnetic
force on particles that are electrically neutral

(g = 0) is, of course, zero.

Supplementary material

Thase familiar with the vector product of two
vectors may recognize that the equation for the
magnetic force is

F=qvxB
This equation correctly gives the magnitude as
well as the direction of the force.

Example question

QZ A ST ST I B S TSR I LY
An electron approaches a bar magnet as shown in
Figure 6.12. What is the direction of the force on
the electron?

W

= &
S8Rttt ins

Answer

The magnetic field at the position of the electron
is to the left. Placing the right hand such that the
thumb points up the page (velocity direction) and
the fingers to the left (field direction), the palm is
pointing out of the page. But the charge is
negative and so the force is into the page.

Motion of charges in magnetic fields
The fact that the magnetic force on a charge is
always normal to the velocity means that the
path of a charge in a magnetic field must be a
circle, as shown in Figure 6.13 (the path can
also be helical = see question 21 at the end of
the chapter).

v

L

(a) (L3

Figure 6.13 A charge in a magnetic field moves in
a circle, as shown in (a). The plane of the circle
is normal to the magnetic field, as shown in (b).
(The charge here is positive.) The magnetic field
is into the page in (a).

Consider a charge ¢ moving with speed v in a
magnetic field B. Assume that the charge's
velocity is normal to the magnetic field, then
the force on the charge is F = gvB and so by
Newton's second law
p2
vB =m—
9 R
where R is the radius of the circle the charge
will move on. Therefore

my
R=—
qB
Very massive or very fast charges will move on
large circles; large charges and large magnetic
fields will result in small circles. The time to
make one full revolution in a magnetic field is
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found from

_ 27R
v
_ 2mmv
st T&E
_ 2mm
T g8

and is thus independent of the speed. This is an
important result in experimental particle
physics and forms the basis for an accelerator
called the cyclotron.

'

Work done and magnetic forces

Since the magnetic force is always normal to
the velocity of the charge, it follows that it
cannot do any work. The big magnets in
particle accelerators are used only to deflect
particles not to increase the particles’ kinetic
energy (this job is done by electric fields).

@rsted’s discovery

A current in a straight long wire produces a
magnetic field around it, The Danish scientist
H. C. @rsted found that:

» The magnitude of the magnetic field B
created by the current in a wire varies
~ linearly with the current in the wire and
inversely with the perpendicular distance
- from the wire (see Figure 6.14). In equation
form : ; .
Mo 4

pimtus

Lt |

current, /| =

r ] Stromn,
‘ ® magnetic ficld B

weak magnetic
él‘leid s

—

-

Figure 6.14 The magnitude of the magnetic field
vector is inversely proportional to the distance
from the wire. The magnetic field is directly
proportional to the current,

The constant of proportionality involves the
new physical constant o, which is called the
magnetic permeability of vacuum, If the wire is
surrounded by something other than a vacuum,
the appropriate permeability of that medium
must be used in the formula above. The value of
the magnetic permeability of the vacuum is
(exactly)

po=4m x 1077 NA2

[t is the analogue in magnetism of the electric
permittivity £ in electricity. The unit of the
magnetic field is the tesla (T). The tesla is a big
unit. The magnetic field of the earth is about
107* T on the earth’s surface. A wire carrying a
current of about 2000 A (as in some high-voltage
transmission lines) produces a magnetic field of
8 x 1077 T at a distance of 5 m from the wire.

Whereas the magnitude of the magnetic field is
straightforward to investigate, its direction is
less so. Let us consider a wire that carries a
current normal to the page. The direction of the
magnetic field at a given point in space is
found by placing magnetic needles around the
wire and seeing how they align themselves.
Figure 6.15 shows the result of this simple
experiment for various points around the wire.

& means current
out of page

/ 3 \T a’ | \ ® means curmen!
D195

Figure 6.15 The direction of the magnetic field at
various points around straight wires carrying
current out of the page (left) and into the page
(right).

The structure of the magnetic field direction is

thus vectors that are tangent to a circle centred
on the wire and ‘flow’ around the circle in the
counter-clockwise sense (as looked at from
above) if the current comes out of the page
{shown by the full circlej and clockwise if the
current goes into the page (shown by the cross
in the circle).



342 Core - Electricity and magnetism

current out of page

®

P P
L]
point at which we

seek the magnetic
ficld

dravw a circle centred m

the wire and going

through the point of

interest

Figure 6.16 To find the magnetic field at a point
near a straight wire, draw the imaginary circle
centred at the wire, and going through the
point of interest. Grip the wire with the fingers
of the right hand with the thumb pointing in
the direction of the current. Draw the tangent
to the circle at the point of interest so that the
vector drawn follows the curl of the fingers.

We can formalize this finding into a ‘right-hand
rule’,

‘> Grip the wire with the fingers of theright
hand in such a way that the thumb points
in the direction of the curtent. Then the
'?direchanmwh:dltheﬁngemeuﬂlsﬂie
- direction of the ‘flow’ of the magnetic field
- vectors. (See Figures 6.16-6.18) -

P
4

Figure 6.17 The magnetic field around a straight
wire at various distances from the wire. Note
that as the distance gets bigger the length of the
arrow representing the magnetic field gets
smaller.

yaii]

dots represent a
BERBODO® yyanec field
g g g g g g @ coming out of the
@@e®® @@ page
BROBD @D crosses represent
g g g g g g magnetic field going
@86 ®e@®e nlwhepage

hand

Figure 6.18 The magnetic field of a straight
current-carrying wire looked at from a different
point of view.

®
draw the Tk this
tangents to the tangent
circle at the
point P
Example question

()3 PITFE S RIERNTTYTTETE 21 I MASERTEMSIAF T
Find the magnetic field at point P in Figure 6.19.

L = 20A
10.0em
. :
20A 10.0cm
o)
P
Figure 6.19.
Answer

The top wire produces a magnetic field into the
page of magnitude

2.00
2m x 0.200

=2.00x%10°"°T
and the second wire produces a magnetic field
out of the page of magnitude

2.00

7 % 0.100
=4.00 = 10° h'|

resulting in a net magnetic field of 2.00 < 107" T
out of the page.

B, = d4mx x 1077

B, =4m x 1077

. The single current loop
The magnetic field of a single current loop was
shown in Figure 6.4 on page 338. The magnetic
field strength B at the centre of a circular loop
of radius R carrying current / is
ol
o=ty
The solenoid
In various applications it is necessary to have a
uniform magnetic field - one that has the same
magnitude and direction in a region of space. A
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N tumns of wire

- v il

fa) -

P magnetic
T Tzl

right hand

(b}

Figure 6.20 (a) A solenoid. If it has an iron core, a
much stronger magnetic field results. (b) The
second right-hand rule giving the direction of
the solenoid magnetic field.

way of achieving such a field is through a
solenoid, which is a wire wound tightly many
times around an axis (see Figure 6.20a).

# In the interior of the solenoid the magmﬁr
field is uniform in magnitude and direction

and is giver by
=== NI
B-=J'-!'-n—l,_-

where N is the number of turns, [ the length
of the solenoid and / the current through it.

A much stronger magnetic field can be
obtained if the solenoid has an iron core.

The direction of the magnetic field of a
solenoid is found by a second right-hand rule
(see Figure 6.20b).

» Hold the solenoid with the right hand so
that the fingers curl in the direction of the
current in the coils of the solenoid. Then
the thumb points in the direction of the
magnetic field.

The solenoid magnetic field outside the
solenoid resembles that of a bar magnet.

The force between two
current-carrying wires

Consider now two long, straight, parallel wires
| each carrying current, say /; and /». The first wire
(wire 1) creates a magnetic field in space, and in
particular at the position of the second wire
(wire 2). Thus, wire 2 will experience a magnetic
force. Similarly, wire 2 will produce a magnetic
field at the position of wire 1, so that wire 1 will
also experience a magnetic force. By Newton's
third law, the forces experienced by the two wires
are equal and opposite (see Figure 6.21). If the
currents are parallel, the forces are attractive and
if they are antiparallel, the forces are repulsive.

Figure 621 The forces on two parallel currents are
‘ equal and opposite.

Let us look at the problem of the forces
between the two wires in more detail.
Consider two long, straight, parallel wires
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each carrying electric current, say /; and L.
The first wire (wire 1) creates a magnetic field
B, and the second wire a magnetic field B..
This means that wire 2 is in the magnetic
field of wire 1 (B,), and so will experience a
force. Similarly, wire 1 is in the magnetic field
of wire 2 (B.), and so it too will experience a
force. If the two parallel wires are separated
by a distance r, then

1
BI = #uz r

b
By = rinzm,

Note that since the currents are different, the
magnetic fields are different too. Now, the force
on a length [ of wire 2 is

Fs =Bl

h
= F, = ﬂﬂigfzi

and similarly the force on an equal length of
wire 1 is

Fy=BahL

—_ F| — _H.;;-;?—'h!.
2mr

s0, the two forces are equal in magnitude even
though the magnetic fields are different. The
equality of the forces is expected. The force
that wire 1 exerts on wire 2 must be
accompanied (Newton's third law) by an equal
and opposite force. Let us now use the right-
hand rule to find the directions of these
forces. Assume first that the currents are
flowing into the page. Then the magnetic
fields are as shown and the forces are
therefore attractive. If wire 1 carries current
into the page and wire 2 carries current out of
the page, the forces are repulsive. In both
cases, we are consistent with Newton's third
law. This is how it should be.

This fact is used to define the ampere, the unit
of electric current. The ampere equals a coulomb
divided by a second but it is no longer defined
this way. )

» The ampere is defined through the
magnehﬁﬁ:rﬂ:hemmmfﬂpalﬂ]elm

: ‘It*theﬁachnalmlengthafmw&m
'tha‘:arelmapartmﬁmngequal

eachudreisdeﬁmdhhbtiﬁ.

The coulomb is defined in terms of the ampere
as the amount of charge that flows past a
certain point in a wire when a current of 1 A
flows for 1 s.

1 Draw the magnetic field lines for two parallel
wires carrying equal currents into the page.
Repeat for antiparallel currents.

2 Find the direction of the missing quantity from
B, v and F in each of the cases shown in
Figure 6.22. The circle represents a positive
charge.

T

(d) (e}

=
a—

Flgure 6.22 For question 2_

3 Two long, straight wires lie on the page and
carry currents of 3.0 A and 4.0 A as shown in
Figure 6.23. Find the magnetic field at point P.

| »40A

Tecm
10 cm
op
v
JO0A

Figure 6.23 For question 3.

4 Find the magnetic field at points P, Q and R in
Figure 6.24. The currents are parallel and
each carry 5.00 A, Point Q is equidistant from
the wires. {The three points lie on the same
plane as the wires.)
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s = ————— —.
40 I “p 9 What is the direction of a magnetic field in
- — each of the four cases in Figure 6.28 that
4.0mm =0 current results in a force on the current as shown?
60 L '
- B 5 | F Tout of
5 i F o linto F B
Figure 6.24 For question 4. = page
Figure 6.28 For question 9.
5 Draw the magnetic field lines that result when |
the magnetic field of a long straight wire | 10 A rectangular loop of wire of size 5 cm X
carrying current into the page is superimposed | 15 cm is placed near a long straight wire with
on a uniform magnetic field pointing to the | side CD at a distance of 5 cm from it, as
right that lies on the page. (See Figure 6.25.) | shown in Figure 6.29. What is the net force
exerted on the loop (magnitude and
- | direction)f How does your answer change if
N the current in the loop is reversed?
® i |
e [ 20A
. i | D . C
Figure 6.25 For question 5. 0.5 A
A B

Figure 6.29 For question 10,
6 A long straight wire carries current as shown

in Figure 6.26. Two electrons move with
velocities that are parallel and perpendicular
to the current. Find the direction of the
magnetic force experienced by each electron.

11 A rectangular coil of size 20 cm X 10 cm is
placed in a horizontal uniform magnetic field
of magnitude 0.050 T, as shown in Figure
6.30. A current of 2.0 A flows in the coil in a
counter-clockwise direction as shown,

(a) Find the force on sections AB, BC, CD

L J

! and DA,
-—» I {(b) What is the net force on the coil?
fa} (b}
Figure 6.26 For question 6. c B

¥ v ¥

7 A proton moves past a bar magnet as shown
in Figure 6.27. Find the direction of the force
it experiences in each case,

¥ ¥

L 4

D LIt A
W SHES ] [N 3] | Figure 6.30 For question 11,
I velocity out of
(a) (b) R ic) o POEE 12 A tightly wound solenoid of length 30 cm is to
Figure 6.27 For question 7. produce a magnetic field of 2.26 X 10T
along its axis when a current of 15.0 A flows
8 An electron is shot along the axis of a in it. If the radius of the solenoid is 12.0 em,
solenoid that carries current. Will it what length of wire is required to make the
experience a magnetic force? solenoid?
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13

14

15

What is the direction of the magnetic field at
points P and Q in the plane of a circular loop
carrying a counter-clockwise current, as
shown in Figure 6.317

=]

Q

Figure 6.31 For question 13,

Two parallel wires a distance of 20.0 cm apart

carry currents of 2.0 A and 3.0 A as shown in

Figure 6.32.

{a) At which points is the magnetic field zero?

(b} How would your answer change if the
direction of the 3.0 A current were
reversed?

= 10A

3.04
Figure 632 For question 14,

Figure 6.33 shows two parallel plates with a
potential difference of 120 V a distance

5.0 cm apart. The top plate is at the higher
potential and the shaded region is a region of
magnetic field normal to the page.

+

—e

Figure 6.33 For question 15.

{a} What should the magnetic field magnitude
and direction be such that an electron
experiences zero net force when shot
through the plates with a speed of
2xX10°ms'.

(b) Would a proton shot with the same speed
through the plates experience zero net
force!

{c} If the electron’s speed were doubled, would
it still be undeflected if the magnetic field
took the value you found in (a}

16

17

A bar magnet is placed in a uniform magnetic
field as shown in Figure 6.34,

{a) Is there a net force on the bar magnet?

{b) Will it move? If so, how?

e o

% [ =
@} l|=|l
.

: "y
A
& A |

Figure 6.34 For question 16.

-

A high-tension electricity wire running along a
north-south line carries a current of 3000.0 A.
If the magnetic field of the earth at the position
of the wire has a magnitude of 5.00 X 1073 T
and makes an angle of 30° below the
harizontal, what is the force experienced by

a length of 30.0 m of the wire?

18 Two circular loops of wire have their planes

19

parallel and one is directly below the other,
as shown in Figure 6.35. Current flows in a
counter-clockwise direction (when looked at
from above the loops) in both loops. Will
there be a force between the loops? If yes,
what will its direction be. If not, why is the
force zero?

G
e

Figure 6.35 For question 18,

Figure 6.36 shows two parallel conductors
carrying current out of the page. Conductor 1
carries double the current of conductor 2,
Draw to scale the magnetic fields created by
each conductor at the position of the other
and the forces on each conductor,




5.6 Magnetic fields 347

L2 23 Find the magnetic field at point P due to three
G) @ currents as shown in Figure 6.38.

2,1

Figure 6.36 For question 19,
5.0em 5.0cm 5.0em

20 An electron of speed v enters a region of @ ® @ OF
magnetic field B directed normally to its DA LQN i
m oul out

velocity and is deflected into a circular path.
Find an expression for the number of
revolutions per second the electron will make.
Ii the electron is replaced by a proton, how

does your answer change?

24 Find the magnetic field at point P due to the

currents shown in Figure 6.39.

21 A prolon of velocity 1.5 % 10° m s enters a

Figure 6.38 For question 23.

region of uniform magnetic field B =050 T. 1204 soem 10.0A
The magnetic field is directed vertically up e e
{along the positive z direction) and the S 4.0em
proton’s velocity is initially on the zx plane ' p

making an angle of 30° with the paositive x Figure 6.39 For question 24.

axis. (See Figure 6.37.)

z = 25 Three parallel wires carry currents as shown
in Figure 6.40. Find the force per unit length
that wires 1 and 3 exert on wire 2.
] X
|
|
|

B field
_F‘igure 6.37 For question 21,

{a) Show that the proton will follow a helical : e
path around the magnetic field lines. 3.0cm
{b) What is the radius of the helix? T 4.0cm . 3
{c) How many revolutions per second does ;¢ : &
the proton make? |.0A ot 4.0A in
{d) How fast is the proton moving along the Figure 6.40 For question 25.
field lines?
{e) What is the vertical separation of the caoils
of the helix? 26 The magnetic field at the centre of a circular
22 An electron enters a region of uniform loop of wire of radius r carrying current [ is
magnetic field B = 0.50 T, its velocity being given by the formula
normal to the magnetic field direction. The
electron is deflected into a circular path and B.= Hos o

leaves the region of magnetic field after being
deflected by an angle of 30° with respect to
its original direction. How long was the
electron in the region of magnetic field?

Use this expression to find the magnetic

field created by an electron as it rotates with
speed v in a circular orbit of radius r around a
nucleus.
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27

29

A tightly wound solenoid is to be made with
wire from a fixed quantity (mass) of copper.
It will then be connected to a source of
fixed potential difference. How should the
solenoid be made in order to produce the
largest magnetic field?

Two parallel wires separated by a distance
d carry the same current £, as shown in
Figure 6.:41.

d

Figure 6.41 For question 28.

fa) Calculate the magnitude of the magnetic
field at a point in the plane of the wires
a distance r from the middle of the
wires.

(b} By using the binomial expansion when r
is much larger than d, show that the
leading term in the expansion is
B = jip+t. Why is this so?

{c) Repeat for the case where the currents are
antiparallel. This time show that the
leading term is B = %5 . Why are the
two expansions so different?

In a particle accelerator called the
cyclotron, a charged particle is accelerated
by an electric field and bent into a circular
path by a magnetic field. The magnetic field
is assumed uniform and the nerth and south
poles are separated by a small gap. The
particles to be accelerated originate from a
source at the centre of the bottom magnet
pole (the south pole in Figure 6.42) and
begin to move outward in a circular path.
The bottom magnet pole is split into two
pieces called dees. An alternating potential
difference is set up between the two dees

so that every time the particle crosses from
one dee to the other it increases its kinetic
energy and thus moves on a circle of larger
radius.

Figure 6.42 For question 29.

30

(a) Explain why the particle follows a
spiral path.

{b) Show that the operation of the cyclotron
depends on the frequency of the
alternating voltage source, being equal
to the frequency of revolution of the
particle to be accelerated.

{c) If the mass and charge of the particle are
m and q, respectively, show that the
period of revolution is

2xm
gB

where B is the magnetic field, and is
thus independent of the speed of the
particle.

id} Find the frequency (i.e. the number of
revolutions per second) of an electron
assuming that the magnetic field has a
value of 0.50 T.

{e) If the potential difference between
the dees at the instant the electrons
cross is 120 kV, what would the kinetic
energy of the electrons be after 100
revolutions?

A uniform magnetic field is established in the
plane of the paper and has magnitude 0.3 mT.
Twao parallel wires separated by 5.0 cm carry
currents of 200 A and 100 A into the plane of
the paper as shown in Figure 6.43. Find the
magnetic force per unit length on the 100 A
wire,
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3

B=03mT
200A) ® | 100A
Figure 6.43 For question 30.

A uniform magnetic field is established in the

plane of the paper as shown in Figure 6.44.

Two wires carry parallel currents of equal

magnitudes normally to the plane of the paper

at P and . Point R is on the line joining P to

Q and closer to Q. The magnetic field at

position R is zero.

{a) Are the currents going into the paper or out
of the paper?

(b} If the current is increased slightly, will the
point where the magnetic field is zero
move to the right or to the left of R?

Figure 6.44 For question 31.

32 Two identical charged particles move in
circular paths at right angles to a uniform
magnetic field as shown in Figure 6.45. The
radius of particle 2 is twice that of particle 1.

5

Figure 6.45 For question 32.

Determine the following ratios:

(a) period of particle 2
period of particle 1’
E,. of particle 2

(b) E, of particle 17
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Electromagnetic induction

This chapter deals with Faraday's law, which dictates how a changing magnetic flux
through a loop induces an emf in the loop. A related law, Lenz’s law, determines the
direction of this emf The principles of electromagnetic induction are the result of
ingenious experimenting by the English physicist Michael Faraday.

Objectives

By the end of this chapter you should be able to:

* calculate flux or flux linkage using ¢ = BAcos#d or & = NBAcos ),
* identify situations in which an emf is induced and determine the

magnitude of the emf by using Faraday's law, £ =

A% .~
a0 or &

_de,
dr *

included are cases of a changing area, a changing magnetic field or a
changing angle between magnetic field and normal to loop;
* find the direction of the induced current using Lenz's law.

A wire moving in a magnetic
field

Let us imagine that a wire of length | is moved

with velocity v in a region of a magnetic field of

constant magnitude B. Assume for convenience
that the magnetic field is coming out of the
page and that the wire moves from top to
bottom (see Figure 7.1).

The wire is conducting: that is, it has many 'free’
electrons. As the wire moves, the electrons also
move from top to bottom. Thus, the magnetic
field will exert a force on these moving
electrons. (We are talking here about the force
on a moving charge, not the force on a current
in the wire. There is no current in the wire since
the wire is not part of any closed circuit.) The
force on the electrons is directed from left to
right and therefore the electrons are pushed to
the right. This means that the left end of the
wire has a net positive charge and the right end
has an equal net negative charge accumulated

L

Y
L

electrons
Pttt

® L @ &

B out ® &
. of page ¥

Figure 7.1 The wire is made to move normally to
the magnetic field at constant speed. An emf
develops between the ends of the wire.

there. (The net charge of the wire is zero.) The
flow of electrons towards the right end of the
wire will stop when the electrons already there
are numerous enough to push any new electrons
back by electrostatic repulsion. There is, in other
words, an electric field established in the wire
whose direction is from left to right. The value of
this electric field is

AV ¥

F=—= —
Ax L

where I/ is the potential difference between the
ends of the wire that is established because of

 AHL - Electricity and magnetism
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the accumulation of electric charge at its ends.
The flow of electrons will thus stop when the
electric force e pushing the electrons back
equals the magnetic force evB pushing them
towards the right end. Thus

ek =prB
and so (substituting for the electric field)
V =vBL

We have found the extraordinary result that a
conducting wire of length [ moving with speed
¥ normally to a magnetic field B will have a
potential difference vBL across its ends. This is
called a motional emf: it has been induced as a
result of the motion of the conductor in the
magnetic field. It is instructive to check that
the quantity vB L really has the units of
potential difference, namely volts:

N
_ =1 _ =1
WBLl=ms ' Tm=ms A_mm
O |

T R Ea

It is worthwhile pointing out that, whereas in
electrostatics the electric field inside a
conductor is zero, this is no longer the case
when charges are allowed to move. Instead, the
condition of zero electric field is replaced by a
more general condition, namely that el =evb
on a moving charge e.

=5

Faraday’s law

As we saw earlier, an electric current creates a
magnetic field. In the previous section we saw
that a wire that moves in a magnetic field has
an induced emf at its ends. Actually producing
a current by a magnetic field was a difficult
problem in nineteenth-century physics.

Consider the following experiment. A magnet is
moved towards a loop of wire whose ends are
connected to a sensitive galvanometer and in a
direction normal to the plane of the loop, as
shown in Figure 7.2. The galvanometer registers
a current.

4

Figure 7.2 A bar magnet moving through a loop of
wire connected to a galvanometer. An emf is
induced in the loop and the galvanometer
regiﬂers 4 current.

If the magnet is simply placed near the coil but
does not move relative to it, nothing happens.
The current has been created as a result of the
motion of the magnet relative to the loop of
wire. If we now move the magnet toward the
coil faster, the reading on the galvanometer is
greater. If we move the coil toward the magnet,
we again find a reading. This indicates that it is
the relative motion of the coil and magnet that
is responsible for the effect. If a magnet of
greater strength is used, the current produced
is greater. If we try a different loop of wire, one
with the same area but a larger number of
turns of wire we find a greater current when a
magnet is moved toward the wire. We also
observe that if the area of the loop is increased,
the current also increases. If the magnet is
moved at an angle to the plane of the loop
other than a right angle, the current decreases.
Our problem is now to find the common thread
in all these observations. To summarize, the
observations are that the current registered by
the galvanometer increases when:

* the relative speed of the magnet with respect
to the coil increases;

* the strength of the magnet increases;

* the number of turns increases;

+ the area of the loop increases;

* the magnet moves at right angles to the plane
of the loop.

-

Faraday found that the common thread behind
all these observations is the concept of magnetic
flux. Imagine a loop of wire, which for
simplicity we take to be planar (i.e. the entire
loop lies on one plane). If this loop is in a



352 AHL - Electricity and magnetism

region of magnetic field whose magnitude and
direction is constant, then we define magnetic
flux as follows.

r?hemagrmﬁuxmthmughmelwpm
& =BAcosd

where A lstﬁemaﬂfthelﬂo]gandﬁ isthe
-angle between the magnetic field direction
and the direction normal to the loop area.
{SeeFigum ?Eilf'the louphasN turns of

¢ = NH‘-*I:osE

in which mmmmwme
unit ﬂfmag:uetxc flux is the Weber M‘b]
]Wb 1Tm’

direction of
magnetic
field

normal o loop

area

Figure 7.3.

This means that if the magnetic field is along
the plane of the loop, then # = 90° and hence
@ = 0 (see Figure 74a). The maximum flux
through the loop occurs when # = 0°, when the
magnetic field is normal to the loop area and
its value is then BA (see Figure 7.4b).

(a) {b)
Figure 74 (a) The loop is not pierced by any
magnetic field lines, so the flux through it is

zero. (b) The magnetic field is normal to the loop,

50 the flux through it is the largest possible.

The intuitive picture of magnetic flux is the
number of magnetic field lines that cross or
pierce the loop area. Note that if the magnetic
field went through only half the loop area, the

other half being in a region of no magnetic
field, then the flux in that case would be

P = -—- . In other words, what counts is the part
of rhe loop area that is pierced by magnetic
field lines. Thus, to increase the magnetic flux
of a loop of wire we must:

* increase the loop area that is exposed to the
magnetic field;

* increase the value of the magnetic field;

+ have the loop normal to the magnetic field.

The loop area has two sides (excluding Mdbius
strips!). Which of the two sides do we choose in
order to define the normal direction to the
loop? There are clearly two vectors normal to
the loop and they point in opposite directions
{see Figure 7.5). The answer is that it does not
matter: the choice is a question of convention.
But once the choice has been made, we must
stick with it.

area normal to loop

other
normal to
loop

Figure 7.5.

Example question
Q'] T T T T T T ST T TS IV T DI TIT VORI
A loop of area 2 cm? is in a constant magnetic
field of B = 0.10 T. What is the magnetic flux
through the loop when:
{a) the loop is perpendicular to the field;
(b} the loop is parallel to the field;
(c) the normal to the loop and the field have an

angle of 60° between them?

Answer

{a) Inthiscase # =0 and cos 0" = 1, s0

flux=010Tx2x10"m’
=2% 107" Wb
ib) In this case ¢ = 90" and cos 90" = 0, so
flux =0
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() In this case # = 607, 50 ' = BA
flux =0.10T x 2 x 10~ m® x 0.5 (...
=107 Wb o
| = ar
What does magnetic flux have to do with the ' =4 x 0.2
problem of how a magnetic field can create an =08V
electric field? The answer lies in a changing I TR T ——————
magnetic flux. In all the cases we described when A uniform magnetic field B = 0.40 T is
looking at Figure 7.2 WE had a magn_eric ﬂux | established into the page, as shown in Figure 7.6.
through the loop, which was changing with A rod of length L = 0.20 m is placed on a railing
time. As a magnet is brought closer to the loop and pushed to the right at constant speed
area, the value of the magnetic field at the loop v =0.60 ms . What is the induced emf in the

position is increasing and so is flux. If the |
magnet is held stationary near the loop, there |

loop?

is flux through the loop but it is not changing -
so nothing happened. If the number of turns is
increased, so is the flux linkage. Thus, there
seems to be a connection between the amount
of current induced and the rate of change of
magnetic flux linkage through the loop. This is - )
known as Faraday's law. Figure 7.6.

® magnetic field
into page

: k£ =1z ; Answer
» Faraday found that the induced emfis -~
equa]mthe{nﬁgamﬂmteofchnngeuf -

The flux in the loop is clearly changing since the

area of the loop decreases. Thus, there will be an
mﬂﬂm ﬂmtls el e e et tats : emf induced. In a time interval At the rod will
3 =—'N.——' =z Leii = 3 . move to the right a distance vAt and so the area
: i will decrease by A A = LvAt, thus
| b =BA
. A
The minus sign need not concern us, as we will | = &= Al
be finding the magnitude of the induced emf. _ B AA
However, if we use calculus (i.e. £ = 4 ] then At
the minus sign must be included. We w:ll use —_ LvAtl
calculus only in Chapter 5.8. At
= Blv
Example questions = 0.40 = 0.20 x 0.60
Q2 Somrrnr Ty SRSFRINILD fos s =48 my

The magnetic field through a single loop of area
0.2 m’ is changing at a rate of 4 T s”'. What is the
induced emf? |

We began this chapter with a discussion of a
wire that is dragged in a region of magnetic
field, We saw, by considering the forces acting
Answer on the electrons of the wire, that a potential

| difference was induced at its ends that is
given by

The magnetic flux through the loop is
changing because of the changing magnetic
field, hence ; | E=Bly
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We may re-derive this result by making use of
the concept of changing flux and Faraday's law.
The wire cuts magnetic field lines as it moves in
the magnetic field. In time Af it will move a
distance of v Al and so the flux through the area
swept by the wire is

Ad = BLvAt
_A®

W=
=BLlv

(see Figure 7.7).

r
w

e

Figure 7.7 The wire sweeps out an area pierced by
magnetic field lines as it moves,

Lenz’s law

Having seen that a changing magnetic flux will
produce an emf and therefore a current in a
conducting loop of wire, we now move to the
interesting problem of determining the
direction of this induced current. We can guess
the answer on the following intuitive grounds.
Let us look again at example question 3. Which
will be the direction of the induced current?
There are two possibilities, the current will
either flow in a clockwise or a counter-
clockwise fashion in the loop. In either case,
there will be a force on the rod because itis a
current-carrying wire in a magnetic field.

If the current flows in the counter<lockwise direction:

By the right-hand rule, the force is directed
towards the right - in the direction of motion
of the rod.

If the current flows in the cockwise direction:

By the right-hand rule, the force is directed
towards the left — in the direction opposite to
the motion of the rod.

Which choice makes physical sense? If we
decide that the current flows in the counter-
clockwise direction, the magnetic force will
accelerate the rod to the right, thereby
increasing its speed. An increased speed leads to
an increased emf (recall that £ = Bly) and thus
increased current, This in turn means that the
force on the rod will also get bigger and thus
the acceleration will get bigger. And we go on
forever. The rod accelerates forever without
anyone providing the necessary energy. This
choice is absurd. It violates the law of
conservation of energy,

The current must flow in the clockwise direction.
The force now is to the left and it opposes the
motion of the rod. If we want the rod to move at
constant speed, then we must apply on the rod a
force equal and opposite to the magnetic force
on the rod. If we do not apply any force on the
rod, then the magnetic force will bring it to rest.

The reasoning applied above involves analysing
forces. It can be used in almost any situation
involving Faraday's law to find the direction of
the induced current, but it would be good if we
had a very general principle that would give us
the answer. Such a general statement has been
given by the Russian physicist Emil Lenz, and is
called Lenz's law.

b Lenz’s law states that the induced current
will be in such a direction as to oppose the
‘change in the magnetic flux that created the
current.

This is a rather subtle and tricky formulation.
Let us apply it to example question 3. The
change in the magnetic Flux has been a decrease
in magnetic flux (area gets smaller). Lenz's law
states that the induced current will be in a
direction so as to oppose this decrease. The
induced current will create its own magnetic field,
as we learned from @rsted’s discovery. (This
magnetic field has nothing to do with the
magnetic field whose changing flux created the
current.) But the magnetic field created by the
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induced current will also have a magnetic flux
through the same loop. If the created magnetic
field is in the same direction as the original
magnetic field, its flux will add to the original
flux (which, remember, is decreasing) and will
thus prevent it from decreasing as fast. In this
case the induced current is opposing the
decrease in flux and this is what Lenz's law
demands. If the induced magnetic field is to be
in the same direction as the external magnetic
field, the current must flow in a clockwise
direction, as we found earlier. (It is assumed
that you can find the direction of the current
given the direction of the magnetic field it
produces - the right-hand rule that allows us to
do this is discussed in the previous chapter.)

Let us make sure that we understand what is
going on by looking at another example.

Example question

(34 EITreSFSEEEETIE Ty YYS TS TeS SSARI T T
A loop of wire has its plane horizontal and a bar
magnet is dropped from above so that it falls
through the loop with (a) the north pole first and
ih) the south pole first, as shown in Figure 7.8,
Find the direction of the current induced in the

loop in each case.
H side view
: F

Figure 7.8.

view from above

Answer

{a) In this case, the north pole of the magnet enters
first. The flux in the loop is increasing because
the magnetic field at the loop is getting bigger
as the magnet approaches. (We are taking the
normal to the loop to be in the vertically down
direction. This means that the flux is getting
more and more positive.) The induced current
must then oppose the increase in the flux. This
can be done if the induced current produces a
magnetic field in the opposite direction to that
of the bar magnet. Thus, the current will flow in

a counter-clockwise direction when looked at
from above.

(b In this case, the south pole of the magnet enters
first. This time let us take the normal to the loop
plane to be vertically up. Then the flux in the
loop is again increasing and so the current will
again produce a magnetic field opposite to the
field of the bar magnet. This means that the
induced magnetic field will be vertically down,
thus the induced current is clockwise.

It is left as an exercise for you to show that the

current (in both cases) flows in the opposite

direction when the magnet is on its way out of the
loop. You should also show that these conclusions
are independent of the choice of the normal to
the loop.

A good example that illustrates many of the
principles of electromagnetic induction follows.
Consider the motion of a rectangular loop of
conducting wire of size | x L that moves with
velocity v and enters a region of magnetic field
of constant value B. The plane of the loop is
normal to the magnetic field. This is illustrated
in Figure 7.9,

At

g 2

5

Figure 7.9 A horizontal loop entering a vertical
magnetic field at constant speed.

As the loop begins to enter the region of
magnetic field, the magnetic flux through the
loop is increasing and so an emf will be induced
in the loop. The flux equals ® = BLx where x is
the length of the loop that has entered the
magnetic field region and so the rate of change
of magnetic flux (and hence the emf) is BLv. A
current then flows in the loop of value

£ BlLv

=R =%
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where R is the loop’s resistance. By Lenz's law,
the direction of the current is counter-
clockwise (looked at from above). Therefore,
there is a force acting on the part of the loop of
length I that is inside the magnetic field. (The
rear part of the loop is not inside the magnetic
field and so experiences zero force.) The
magnitude of the force is

212
sz”L:BI.V

and is directed against the velocity of the loop.
Thus, if the loop is to maintain a constant
velocity, a force pushing it to the right and
equal to F must be applied to the loop. This
means that this force does work. The rate at
which work is being done (power dissipated) is

HELZVZ

F=Fy R

Where does this work go? It does not go into
changing the kinetic energy of the loop since
the loop is made to move at constant speed. The
work goes into heating the wire. The wire has
resistance and current flows in it. The power
dissipated in the loop as a result of the current
initis

B 21.21"'2

P=EI 7

and is identical to the power dissipated by the
external force, as it should be by energy
conservation.

Faraday’s disc

An interesting example of induced emf is
provided by Faraday's disc. Like the example of
the rod moving in a magnetic field, an emf is
induced even though no magnetic flux is
changing. This is a motional emf. A conducting
disc of radius R rotates about an axis normal to
its plane and going through its centre (see
Figure 7.10). A magnetic field of constant value
is established everywhere in space and is
directed along the axis of rotation, which
means it is also normal to the plane of the disc.

There is magnetic flux though the disc but it is
constant in time, I[magine that the disc rotates
with constant angular velocity in a counter-
clockwise direction.

magnetic field
into page

e ® @ @ @ =

2 @

Figure 7.10 The disc is rotating at right angles to
the magnetic field. A potential difference
develops between the centre and the
circumference.

This means that electrons in the disc
experience a magnetic force that pushes them
towards the circumference of the disc. The
accumulation of electrons on the rim means
that there is potential difference between the
circumference and the centre of the disc. The
flow of electrons will stop when the electric
force on electrons trying to move to the
circumference equals the magnetic force, The
magnetic force on an electron at a distance r
from the centre is

F=evB=ewrB

The magnitude of the electric field is & and so

e%rE = ear B

which can be integrated to give
AV = ;0R*B

for the potential difference between the centre
and the circumference.

As with the case of the wire that moved in a
magnetic field, the potential difference above
can also be obtained through the concept of
flux through a swept area. Thus, consider a radius
of the disc. As the disc rotates, the radius can be
thought to rotate too, and thus sweeps out an
area given by

AA = 1R?A6
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where A# is the angle the radius rotates by in a 2 The flux through a loop as a function of time
time equal to Al This is just the formula for I is given by the graph shown in Figure 7.13.
the area of a sector of a circle of radius R and - Make a sketch of the emf induced in the loop
angle Af. (See Figure 7.11.) as a function of time.

flux/Wh

Figure 7.11 As a disc rotates, the radius can be

thought to rotate too, sweeping out an area, . : . ' . L]
: 0 2 4 & 8 10
Figure 7.13 For question 2.
If the angular velocity of rotation is w, then
fﬁ'ﬁ' = wAl ?ng the ﬂﬂ?:f through the swept area 3 Figure 7.14 shows the emf induced in a loop
is A® = B3R wAt. This means that the as a result of a changing flux in the loop.
potential difference at the ends of the radius is (a) What is a possible flux versus time graph
A that would give rise to such an emf?
g Al (b} Why isn't there a unigue answer?
B3R wAl .
S — ﬁi!_ | emfiv
i ! a
= 1BR*w - e
as we found previously. | 6

| o
o . 3 ) * timies

Figure 7.14 For question 3.

Questions

1 The flux through a loop as a function of time
is given by the graph in Figure 7.12. Make a ' 4
sketch of the emf induced in the loop as a
function of time.

Figure 7.15 shows a top view of two solenoids
with their axes parallel, one with a smaller
diameter so that it fits inside the other. If the
higger solenoid has a current flowing in the
flux/Wh clockwise direction (looked at from abowve)
and the current is increasing in magnitude,
find the direction of the induced current in the
smaller solenoid.

| : . . * 15
o 2 4 6 -3 10

Figure 7.12 For question 1. : Figure 7.15 For question 4.
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5 A metallic ring is dropped from a height above straight wire:
a bar magnet as shown in Figure 7.16, {a) increases;
Determine the direction of the induced (b) decreases.

current in the ring as the ring falls over the
magnet in each case, giving full explanations
for your choices.

@ CD Figure 7.19 For question 9,
'
{a) ]

10 A coil of 1000 turns and length 20.0 cm has a
smaller coil of diameter 2.0 cm and 200 turns
inserted inside it. If the current in the big coil
is changing at 150 A s, find the emf induced
in the smaller coil.

]
Figure 7.16 For question 5.

6 A magnel is dropped from above into a

metallic ring as shown in Figure 7.17. 11 How can the Faraday disc be connected to an
Determine the direction of the current outside circuit to provide it with electric
induced in the ring in each case. current? Is the current provided AC or DC?

12 Look at Figure 7.20, which we used earlier in
the text. If the magnetic field is increasing,
what will happen to the rod AB?

“ { B ®m @ & & @ magnehc feld
into page

{a) () 2

Figure 7.17 For question 6.

7 For question 5(a) determine the direction of
the magnetic force on the ring as it (a) enters
and (b} leaves the magnetic field.

Figure 7.20 For question 12.

8 A metallic rod of length L is dragged with
constant velocily ¥ in a region of magnetic HL Mathematics only
field directed into the page (shaded region), as
shown in Figure 7,18, By considering the
force on electrons inside the rod, show that
the ends of the rod will become oppositely
charged. Which end is positively charged?

13 The problem of the rod sliding over a wire in
the shape of a 1 that we met in example
question 3 and question 12 will now be
re-examined for the case in which the railing
is no longer horizontal but is inclined by an
angle #, as shown in Figure 7.21. The rod

i ? : 8 2 has mass m, length L, resistance R and the
2 ® l @ @
Lo -] = &

Figure 7.18 For question 8.

7
9 Find the direction of the current in the loop Figure 7.21 For question 13.
shown in Figure 7.19 as the current in the
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14

magnetic field B is uniform and directed
verlically upward. The rod starts from rest:
find the terminal velocity reached by the
rod.

Hint: Do this in steps as follows.

Part A: (a) Find the flux of the magnetic field
through the loop. (b) Find the rate of change
of this flux and hence the induced emf.

{c) What is the direction of the induced
current? {d) Find the magnitude and
direction of the magnetic force on the rod.
(e) Assume terminal velocity is reached and
find an expression for it. :

Part B: To find the precise dependence of the
velocity on time, write down an expression
for the acceleration of the rod down the
plane by applying Newton'’s second law.
Realize that the acceleration is the time
derivative of velocity and hence solve the
differential equation to find the velocity as a
function of time. Verify that the rod reaches
the terminal velocity you found in (e).

A square conducting loop of wire of side a,
mass m and resistance R falls under gravity
normally to a uniform, horizontal magnetic
field B, as shown in Figure 7.22. The area of
the loop is small enough so that it can be
contained totally within the region of the

field.

(a) While the loop is entering the magnetic
field, find the magnitude and direction of
the induced current.

{b) Write down an expression for the
acceleration of the loop as it is entering
the field.

() Wirite the acceleration as the time
derivative of the velocity and hence show
that after time ¢ the velocity of the loop is

_ gmR B )]
S Bia? |:1 —-exp( FR_"

where we have assumed for simplicity
that the loop is dropped from rest from a
position where the bottom leg is just

15

about to enter the region of magnetic
field.
(d) Show that the quantity ﬁ-[.":‘é has units of

velocity and 2% units of time.

a falling loop
@ ® @ regionof magnetic
field coming out of
@ ® @ thepage
Bos=@-= 0

Figure 7.22 For question 14.

It was shown in the text that the potential
difference between the centre and a point on
the circumference of a metallic disc of
radius r that rotates with constant angular
velocity @ normally to a magnetic field B is
AV = %aur:ﬂ.

Assume the disc shown in Figure 7.23 is

rotating in a clockwise sense and that the

magnetic field is directed into the page.

{a) Which point is at the higher potential,
the centre or a point on the
circumference?

ib) If an external circuit of resistance R is
connected between the centre and a
point on the circumference, show that
the current that will flow is f= 32“’73.

ic) - What will be the direction of the current?

(d) Show that the power dissipated in the

wirig?

resistor is F = i
brush
e -
external circuit R
[
magnetic field
into page &

Figure 7.23 For question 15.
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Alternating current

This chapter discusses the production of alternating current by the AC generator and the
properties of alternating current. We prove the transformer equation and discuss the use
of transformers in power transmission. |

Objectives |

By the end of this chapter you should be able to:

» appreciate that the induced emf in a uniformly rotating coil is
sinusoidal;

* explain the operation and importance of the AC generator;

» understand the operation of the transformer;

* apply the transformer equation, l‘ = ::‘— and explain the use of
transformers in power transmission;

* understand the terms rms and peak current (£, = \{J_;] and voltage
(Ems = 5-] and calculate the average power in simple AC circuits

HP::_ - {CI-':I-' L — F,a-.-‘-ﬂuh F'

The AC generator S L A

One very important application of
electromagnetic induction is the AC (alternating
current) generator — the method used
universally to produce electricity (see Figure 8.1),
The generator is in some sense a motor in reverse.
A coil is made to rotate in a region of magnetic Figure 8.1 A coil that is forced to turn in a region
field. This can be accomplished in a variety of of magnetic field will produce an emf.

ways: by a diesel engine burning oil, by falling
water in a hydroelectric power station, by wind I
power, etc. 4

coil is made to rotate by
external agent

0.1

The flux in the coil changes as the coil rotates
and so an emf is produced in it. We assume
that the coil has a single turn of wire around
it, the magnetic field is B =0.4 T, the coil has
an area of 0.318 m? and a rotation rate of 50 | =005
revolutions per second. Then the flux in the |
coil changes as time goes on according to a ! ,

cosine function as shown in Figure 8.2. (Time Figure 8.2 The flux in the coil is changing with
zero is taken to correspond to the coil in the time,

0.05

L /ms

0.1

|||||||-|||.||.
|
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position of Figure 8.1 so that the fluxis a
maximum.)

The equation of the flux (linkage) is, in general,
i = NBAcosd

where @ is the angle between the magnetic field
and the normal to the coil and N is the number
of turns in the coil. Assuming that the coil
rotates at a constant angular velocity w, it
follows that # = wt and so the flux becomes

P = NBEA cosiet )

P By Faraday's law, the emf induced in the coil
i (minus) the rate of change of the flux

]ful::a@muithus is given by
do
E—HE. -

scwemes

The guantity £ = @NBA is the peak voltage
produced by the generator. For the same
numerical values as in the previous example,
the emf induced is given by the graph shown in
Figure 8.3 (w = 2xf =314.6 57').

;r;r-"-;\ ;ZZ-;I___;__.\.?_Z'_E:

[ INEEREEY (1] INEMERRG,) SEREER '_w\'.f Ay fms

Figure 8.3 The emf induced in the loop as a
function of time. The peak voltage is 40 V.

Note that the emf induced is zero whenever the
flux assumes its maximum or minimum values
and, conversely, it is a maximum or minimum
whenever the flux is zero. The noteworthy
thing here is that the voltage can be negative as
well as positive. This is what is_called

alternating voltage and the current that flows
in the coil is alternating current (AC). This
means that, unlike the ordinary direct current
(DC) that flows in a circuit connected to a
battery, the electrons do not drift in the same
direction but oscillate back and forth with the
same frequency as that of the voltage.

The current that will flow in a circuit of
resistance K can be found from

£

R

B Eo sinfef )
o R

= lysinfwt)

I=

where J; = £ is the peak current. For the emf of
Figure 8.3 and a resistance of 16 @ the current
is shown in Figure 8.4.

» 1ims

ofr Ok 200 s
SpER ] i
R R
; 7 NG
Figure 8.4 The induced current in the rotating
loop. Note that the current is in phase with the

emf. The peak current is found from peak
voltage divided by resistance, i.e. 40/16 = 2.5 A,

Power in AC circuits

The power generated in an AC circuit is

P =&l
= Eoly sin‘{al)

and, just like the current and the voltage, is not
constant in time. It has a peak value given by
the product of the peak voltage and peak
current (i.e. 40 x 2.5 = 100W, for the previous
example). The power as a function of time is
shown in Figure 8.5.
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Figure 8.5 The power dissipated in a resistor as a
function of time. Note that the period of one
rotation of the coil is 20 ms, The power becomes
zero every half rotation of the coil. The peak
power is 100 W. The horizontal line indicates
the average power of 50 W.

» It is instructive to write the expression for
power in terms of the parameters of the
rotating coil;

Pl
= wNBAsin(at) x ﬂ--—--“‘”“:"‘“’”
- -

This shows, for example, that if the speed of
rotation of the coil is doubled, the power is
increased by a factor of 4.

Root mean square (rms) quantities

It would be convenient to define an average
voltage, average current and average power. For
power this is not difficult, as power is always
positive. Trying to find the average of the
current or voltage, though, would give zero, In
any one cycle, the voltage and current are as
much positive as they are negative and so
average to zero. To get around this problem we
use the following trick. First, we square the
current, getting a quantity that is always
positive during the entire cycle. Then we find
the average of this positive quantity. Finally,
we take its square root. The result is called the
rms value of the current (from root mean
square).

How do we evaluate an rms quantity? Squaring
the current gives

P = [ sin’(el)
2
= E“II — cos(2wt )]

where in the last step we used the identity

1 — cos 28
|

=

sin” # =

Over one cycle, the cosine term averages to zero
and so the average of the square of the current is

-] fl_:
{f}=§

(angular brackets denote an average). Thus
¥
-'Frrrn. = _IJ-
V2
Doing exactly the same thing for the voltage

results in an rms voltage of

&

Since

P =&k Si!'izﬂm”
&1,
= “2’[1 — cos(2wt )]

we get the following:

» The average power is
(Py= (%n —cus(zm])

_ &b
2502
ik
V22
= Eumsdrns
{again the term with the cosine averages to
ZET0 over one period),

On a very non-rigorous level, we might say that
dealing with rms quantities turns AC circuits
into DC circuits. The product of the rms current
times the rms voltage gives the average power in
the circuit.
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» We may also use the alternative formulae
for average power
APy =RE
i EZ

Sl
R

Example question
Q) Ol R et S T AT

Find the rms quantities corresponding to the
current and voltage of Figures 8.3 and 8.4.

Answer
The peak voltage is 40 V giving
40

-
~ 28V

Similarly, the peak current is 2.5 A, giving

2.5
2

= 1.8A

fn

From Figure 8.5, the peak power is 100 W and
the average power is 50 W. The product of the
rms current times the rms voltage is indeed

1.8 =28 =50W

The slip-ring commutator

The current must now be fed from the rotating
coil into an external circuit where it can be put
to use. The rotating coil is connected to the
outside circuit, to which it provides current,
through slip rings, as shown in Figure 8.6. Each
of the wires leading into the coil is firmly

Figure 8.6 The slip-ring connection of the rotating
coil to the outside circuit.

connected to its own ring 5. As the coil rotates,
the ring rotates along with it, but each ring is
always in contact with the same brush (B} that
connects to the outside circuit. This means that
since AC current is produced in the coil, AC
current will be fed to the external circuit as
well.

(What current would flow in an external circuit
if the generator were connected to it via a split
ring?)

The great advantage of AC voltage and current
is that they allow the use of the transformer
(see below),

Back-emf in the DC motor

In the DC motor, current fed into a loop that
is in a magnetic field makes the coil turn as
a result of the forces that develop on the
sides of the loop. Because of Faraday's law
an emf (the back-emf) will be induced in the
loop as it begins to rotate, since there is a
changing magnetic flux in the loop. By
Lenz's law, this emf will oppose the change
in the flux that created it. This means that
a current will flow in the loop that is
opposite to the current that the external
battery feeds into the loop. The current in
the loop will thus be less when the coil is
rotating than initially, when the rotation
had not yet started. The back-emf is the
reason that lights sometimes dim when the
motor of the refrigerator turns on. Initially
the current drawn by the motor is large and
only after the coil of the motor achieves a
constant speed of rotation does the current
drop to lower values.

The transformer

Consider two coils placed near each other as
shown in Figure 8.7. The turns of both coils are
wrapped around an iron core.

The first coil (the primary) has N, turns of wire
and the second (the secondary) N, turns. If the
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FE] : 5

3 i
Ailhiss sawas

Figure 8.7 The changing flux in the secondary coil
produces an emf in that coil.

primary coil is connected to an AC source of
voltage, an alternating current will pass
through this coil. The magnetic field this
current will create will be -::hangilng in both
magnitude and direction, since the current is.
As the two coils are near each other, the
magnetic field of the first coil enters the second
coil and thus there is magnetic flux in this
second coil. The purpose of the iron core is to
ensure that as much of the flux produced in
the primary coil as possible enters the
secondary coil. Iron has the property that it
confines magnetic flux and so no magnetic
field lines spread out into the region outside
the core. Since the magnetic field is changing,
the flux is also changing and thus, by Faraday's
law, there will be an induced emf in the
secondary coil.

If the flux is changing at a rate 4% through one
turn of wire, then the rate of change of flux
linkage in the second coil is N,4¥, and that,
therefore, is the emf induced in the secondary
coil, ¥, = N.4%. Similarly, the emf, V,, in the
first coil is V;, = N, . Hence

Vo N,

V, "N,
The arrangement just described is called a
transformer. What we have achieved is to make a
device that takes in AC voltage (V) in the
primary coil and delivers in the secondary coil
a different AC voltage (V.). If the secondary coil
has more turns than the primary, the
secondary voltage is bigger than the primary
voltage (if the secondary coil has fewer turns,
the secondary voltage is smaller). Note that the
transformer works only when the voltage in the

primary coil is changing. Direct (i.e. constant)
voltage fed into the primary coil would result in
zero voltage in the secondary (except for the
short interval of time it takes the current in the
primary coil to reach its final steady value). In
the case of standard AC voltage, there is a sine
dependence on time with a frequency of 50 or
60 Hz. The frequency of the voltage in the
secondary coil stays the same - the transformer
cannot change the frequency of the voltage.

If the primary coil has a current /, in it, then
the power dissipated in the primary coil is V,/,.
Assuming no power losses, the power dissipated
in the secondary coil is the same as that in the
primary and thus

Vol, = V.1,

Therefore, using = = %ﬂ the relationship
between the currents is

Iy
LN,
{Power losses are reduced by having a laminated
core rather than a single block for the core - this
reduces power losses by eliminating eddy
currents. Eddy currents are created in the core
because the free electrons of the core move in
the presence of a magnetic field. Thus these
electrons are deflected into circular paths and
they create small currents in the core. See
Figure 8.8.)

O
Q@
Q

a solid core will
have eddy curmrents

4 laminated core with
insulation between layers
reduces eddies

Figure 8.8 Free electrons move in circular paths
creating eddy currents in the magnetic field
that is established in the core. Nearly all of
these currents are eliminated if the core is
laminated.
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Transformers and power
transmission

Transformers are used in the transport of
electricity from power stations, where
electricity is produced, to the consumer. At any
given time, a city will have a power demand, P,
which is quite large (many megawatts for a large
city). If the power station sends out electricity at a
voltage V and a current I flows in the cables
from the power station to the city and back, then

=W

The cables have resistance, however, and thus
there is power loss Py, = RI* where R stands
for the total resistance of the cables. To
minimize this loss it is necessary to minimize
the current (there is not much that can be done
about minimizing R). However, small [ (/is still
a few thousand amperes) means large V' (recall,
P = V), which is why power companies supply
electricity at large voltages. Transformers are
then used to reduce the high voltage down to
that required for normal household appliances
(220 V or 110 V). {See Figure 8.9.)

high voliage

Figure 8.9 The voltage produced in the power
station is high in order to reduce losses during
transmission. Transformers are used to step
down the voltage to what the consumer
requires.

Example question

(! ST T T S A M R S SRV AT
A power company produces 500 MW of
electricity at a voltage of 1.2 x 10° V. The total
resistance of the cables leading to and from a
town is 4 2. How much current flows from the
power station? What is the percentage loss of
power in the cables? If the electricity were
transmitted at the lower voltage of 0.8 x 107 V,
what would the power loss be?-

Answer
From P = V/{the current is
500 = 10°

T 1.2 %108
=4.2 x 10°A

The power loss in the cables is

P = RI?
=4.0% (4.2 x 10°)
=71 x100W
=71 MW

This corresponds to a power loss of
71/500 % 100% = 14% of the produced power.
With the lower voltage the current is

500 x 10°
T 0.8 x 105
=6.2 x 10°A

The power lost is then

P=RI"
=40 % (6.2 x 10°)
=1.5x 10" W
= 150 MW

The percentage of power lost is now 150/500 x
100% = 30%.

Questions

1 A transformer has 500 turns in its primary coil
and 200 in the secondary coil.

(a) If an AC voltage of 220 V and frequency
50 Hz is established in the primary coil,
find the voltage and frequency induced in
the secondary coil.

{b) If the primary current is 6.0 A, find the
current in the secondary coil assuming an
efficiency of 70%.

2 A 300 MW power station produces electricity
at 80 kV, which is then supplied to consumers
along cables of total resistance 5.0 2.

{a) What percentage of the produced power is
lost in the cables?

(b) What does the percentage become if the
electricity is produced at 100 kv?¢
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3 The rms voltage output of a generator is 220 V. PIW
The coil is a square of side 20.0 cm, has 20t m
300 turns of wire and rotates at 50 revolutions /\ /\ / \ ' / \ :
per second. What is the magnetic field? 15+ 1 |
4 Figure 8.10 shows the variation, with time, of / \ / \
the magnetic flux linkage through a loop. . - 1
What is the rms value of the emf produced in - / \ / \ I \ / \
the loop? * - Fr \/ ‘! f i
i i i i i i [ i i ] i L i _+ I‘I
flux/ Wb 0 0 : Ls 2
10 Figure 8.11 For question 7.
X ?/\ j[\ / (c} Find the period of rotation of the coil.
\ l \ l \ ' ] (dl The caoil is now rotated at double the
FAFer | BT § IR P W A L » t/ms speed. Draw a graph to show the variation
0 i’15 / \1 5 / ! \‘35/ 4 with time of the power dissipated in the
5 i resistor.
B \J \] . 8 Figure 8.12 shows the variation of the flux in
-10 ' a coil as it rotates in a magnetic field with the

Figure 8.10 For question 4. angle between the magnetic field and the

normal to the coil.

(a) Draw a graph to show the variation of the
induced emf with angle.

The same coil is now rotated at double the

speed in the same magnetic field. Draw

graphs to show:

(b) the variation of the flux with angle;

(c) the variation of the induced emf with

5 A power station produces 150 kW of power,
which is transmitted along cables of total
resistance 2.0 Q. What fraction of the power
is lost if it is transmitted at:
fa) 1000 V;

{bi 5000 Wi

6 If the connection of a rotating generator coil

to the outside circuit were made through a e
split ring (as discussed in the case of the DC
motor), what sort of current would flow in the ]G
external circuit? 'm“; ]
7 Figure 8.11 shows the variation with lime of a0k i /
the power dissipated in a resistor when an = /'f
alternating voltage from a generator is Ll o . \, S swwm s gy S v angle/radians
established at its ends. Assume that the P /
resistance is constant at 2.5 €. E 4
{a) Find the rms value of the current. _40 EEEH _// S.

{b) Find the rms value of the voltage. Figure 8.12 For question 8.
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The atom and its nucleus

In ancient times, the Greek philosopher Demokritos asserted that all matter is made out
of indivisible units. This chapter introduces the basic ideas and models that have given
rise 1o our present understanding of the atom and its nucleus. We begin with Rutherford's
experiment that provided the evidence for the existence of a small, massive and positively
charged atomic nucleus and close with a discussion of the fundamental forces that operate

within the nucleus.

Dbjectives

By the end of this chapter you should be able to:

+ appreciate that atomic spectra provide evidence for an atom that can only

take discrete values in energy,

» explain what isotopes are and how their existence implies that neutrons

are present inside the nucleus;

» state the meaning of the terms nuclide, nucleon, mass number and atomic

number (proton number);

* putline the properties of the forces that operate within the nucleus.

The discovery of the
nuclear atom

In 1909, Geiger and Marsden, working under
Rutherford’s direction, performed a series of
experiments in which they studied the
scattering of alpha particles shot at a thin
gold foil. Alpha particles have a mass
approximately four times that of the hydrogen
atom and a positive electric charge of two
units {2e). Alpha particles are emitted when
unstable elements decay; we will study them
in more detail later.

Geiger and Marsden used radon as their
source of alpha particles, which they directed
in a fine beam toward the thin gold foil. The
scattered alpha particles were detected
{through a microscope) by the glow they
caused on a fluorescent screen at the point of

impact. As expected, most of the alpha
particles were detected at very small
scattering angles, such as at positions A, B
and C in Figure 1.1.

thin gold foil
e pRab s A
alpha particles EASS T
_.—_...,—-—"'_'_'_
» B
——
T T rod i

A \D
.,-'-"'—FFFF‘J‘ v
| & =
lurge-angle scattering smiall-angle scattering
Figure 1.1 The majority of alpha particles are
slightly deflected by the gold foil. Very
occasionally, large-angle scatterings take place.
The small deflections could be understood in
terms of alpha particles approaching the
nucleus at large distances. The large deflections
were due to alpha particles approaching very
close to the nucleus.

sics
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These small deflections could be understood in
terms of the electrostatic force of repulsion
between the positive charge of the gold atoms
and the positive charge of the alpha particles.
(Mote that an alpha is about 8000 times more
massive than the electron and so the effect of
the electrons of the gold atoms on the path of
the alphas is negligible.)

..........

5 :i‘igmel‘l.“‘.lheselalge-angle smtneﬂng

: -mmmmnlﬁnntbeundeﬁmdmmms
 of the prevailing model of the time -

- Thomson’s model of theatom.

Consequences of the Rutherford
(Geiger-Marsden) experiment

The very large deflection was indicative of an
enormous force of repulsion between the alpha
particle and the carrier of the positive charge
of the atom. Such a large force could not be
produced if the positive charge was distributed
over the entire atomic volume, as Thomson had
suggested earlier (see Figure 1.2). Rather, it
suggested that the positive charge resided on
an object that was tiny (thus the alpha particle
could come very close to it) but massive
{because there is no recoil of the gold atoms)
(see Figure 1.3). In this way, the alpha particle
could approach the positive charge at a very

pﬂﬂl ﬂf closest uppmach

N positive charge
-\ spread over the
- atomic volume

Figure 1.2 In Thomson's model, the closest an
alpha particle can come to the atom's centre is a
distance equal to the atomic radius.

foree is small
and 50 is deflection

this alpha particle approaches very
close to the positive charge and
experiences a large force

Figure 1.3 In Rutherford’s model, the alpha
particle can approach much closer if the
nucleus is very small.

small distance, and the Coulomb force of
repulsion, being proportional to the inverse of
the square of the separation, would then be
enormous. This force causes the large
deflection in the alpha particle’s path.

Rutherford calculated theoretically the number
of alpha particles expected at particular
scattering angles based on Coulomb’s force law.
He found agreement with his experiments if
the positive atomic charge was confined to a
region of linear size approximately equal to
10" " m. This and subsequent experiments
confirmed the existence of a nucleus inside the
atom - a small, massive object carrying the
positive charge of the atom.

Example question

O DI e s T I I TS IS S VI TT T BN SS
Calculate the electric field at the surface of a
nucleus of one unit of positive charge and radius
107" m. Compare this with the value of the
electric field of the same charge that is now
spread over a sphere of radius 107" m

Answer
Applying the formula for the electric field F = k§

we find

1.6 x 107"
(10-15)2
=14x 10" NC

F=9x10"x

Near the larger sphere, the electric field is
E=14x10" NC', which is a factor of 10"
smaller. This is why the deflecting forces in
Rutherford’s model are so large compared with
what one might expect from Thomsaon’s model,
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The Rutherford model
of the atom

These discoveries led to a new picture of the
atom. A massive, positively charged nucleus
occupied the centre of the atom and electrons
orbited this nucleus in much the same way that
planets orbit the sun: this was the Rutherford
model (see Figure 1.4). The force keeping the
electrons in orbit was the electrical force
between the negative electron charge and the
positive nuclear charge.

Figure 1.4 Rutherford's atomic model has the
electrons orbiting the nucleus like planets
orbiting the sun.

Immediately after these discoveries, difficulties
arose with the Rutherford model.

3 Ihe electmns in Rutherford" samm nmre in
: m.'rtuiar paths mwnd th:nudmk and 50
 suffer centripetal : accelmum Ifther '
radmteandlmeenery it can be shown
that this would lead to electron orbits that -
mﬂldsp:ralmtéthmmdéﬁs The time
reql.tuedfur the electron to fall into the
31 nuamnnt‘the order ufnhmmconds:.
~ Thus, the Rut:imrﬁmd model cammtﬂrp’la.{n
_._vmymam umbte.j;e Mnratomseust.

The Bohr model

The first artempt to solve this problem came
from the Danish physicist Niels Bohr in 1911
These are the Bohr postulates.

» Bohr examined the simplest atom, that of
hydrogen, and realized that the electron
could exist in certain specific states of
definite energy, without radiating away
energy. if a certain condition was met by
the orbit radius. The electron energy is
thus discrete as opposed to continuous. The

electron can only lose energy when it
makes a transition from one state to

- another of lower energy. The emitted
energy is then the difference in energy
between the initial and final states. (See

- Figure 1 S}Thesu-ungest;neee afmdenm
in support of Bohr's idea is the Hximenuh nf

 emission and absorption spectra.

T energy

excited states

ground state =
lowest energy
state

Figure 1.5 In the Bohr model the electron occupies
one of a number of specific states each with a
well-defined energy. While it is in one of these
states, the electron does not radiate away energy.

Spectra

Consider hydrogen as an example. Under normal
conditions (i.e. normal remperature, pressure,
etc.) the electron in each hydrogen atom
occupies the lowest energy state or energy level
(the ground state). If the atoms are somehow
excited (by increasing their temperature, for
example) the electrons leave the ground state
and occupy one of the higher energy, excited
states. As soon as they do so, however, they make
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a transition back down to lower energy states,
radiating energy in the process. The energy of
the light emitted is very well defined since it
corresponds to the difference in energy between
the states involved in the transition. Knowing
this energy difference allows us to calculate the
wavelength of the emitted light, and so the
wavelength, too, is well defined since the energy
1s. In this way it is found, for example, that
hydrogen emits light of wavelengths 656 nm,
486 nm and 410 nm. Only hydrogen emits light
of these wavelengths since only hydrogen has
states whose energy differences lead to these
wavelengths. Helium, for example, has energy
states of different energy, so the wavelengths of
light emitted when helium atoms are heated are
different from those of hydrogen.

» The set of wavelengths of light emitted by
the atoms of an element is called the
emission spectrum of the element.

Conversely, consider atoms of hydrogen that are
in their ground states and imagine sending
light of a specific wavelength through a given
quantity of hydrogen. If the wavelength of light
does not correspond to any of the wavelengths
in the emission spectrum of hydrogen, the light
is transmitted through the atoms of hydrogen
without any absorption. If, however, it matches
one of the emission spectrum wavelengths,
then this light is absorbed.

» The electrons simply take this energy and
use it in order to make a transition to a
higher energy state. The wavelengths that
are so absorbed make up the absorption
spectrum of the element and (as indicated
above) they are the same wavelengths as
those in the emission spectrum.

Thus, if white light (i.e. light containing all
wavelengths) is sent through the gas and the
transmitted light is analysed through a
spectrometer, dark lines will be found at the
position of the absorbed wavelengths.

‘ Nuclear structure

Nuclei are made up of smaller particles, called
protons and neutrons. The word nucleon is used
to denote a proton or a neutron.

» « The number of protons in a nucleus is
denoted by Z, and is called the atomic
{or proton) number.
* The total number of nucleons (protons
+ neutrons) is called the mass (or
nucleon) number, and is denoted by A.

Then the electric charge of the nucleus is Z|e|.
The number of neutrons in the nucleus (the
neutron number N) is thus N = A — 7. We will
use the atomic and mass numbers to denote a
nucleus in the following way: the symbaol ﬁX
stands for the nucleus of element X, whose
atomic number is Z and mass number is A.
Thus |H, 3He, 30Ca, 210Pb and %38U are,
respectively, the nuclei of hydrogen, helium,
calcium, lead and uranium, with one, two,
twenty, eighty-two and ninety-two protons. A
nucleus with a specific number of protons and
neutrons is also called a nuclide.

We can apply this notation to the nucleons
themselves. For example, the proton (symbol p)
can be written as |p and the neutron (symbol n)
as \n. We can even extend this notation to the
electron, even though the electron has nothing
to do with the nucleus and nucleons. We note
that the atomic number is not only the number
of protons in the nucleus but also its electric
charge in units of |e|. In terms of this unit, the
charge of the electron is —1 and so we represent
the electron by _{e. The mass number of the
electron is zero - it is so light with respect to
the protons and neutrons that it is, effectively,
massless. The photon (the particle of light) can
also be represented in this way: the photon has
the Greek letter gamma as its symbol, and since
it has zero electric charge and (strictly) zero
mass it is represented by Jy. Table 1.1 gives a
summary of these parricles and their symbols,
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Proton p
Neutron n
Electron e
P_i_mmn Er
Alpha particle 4He or du
Table 1.1
Isotopes

Nuclei that have the same number of protons
(and therefore the same atomic number Z) but
different number of neutrons (i.e. different N
and mass number A) are called isotopes of each
other, Since isotopes have the same number of
protons, their atoms have the same number of
electrons as well. This means that isotopes have
identical chemical but different physical
properties. The existence of isotopes can be
demonstrated with an instrument called the
mass spectrometer (this is discussed further in
Chapter 6.6). The existence of isotopes is
evidence for the existence of neutrons inside
atomic nuclei.

The forces within the nucleus

The nucleons (i.e. protons and neutrons) are
bound together in the nucleus by a force we have
not yet met — the strong nuclear force. It is
necessary to have a new force inside the nucleus,
because otherwise the electrical repulsion
between the positively charged protons would
break the nucleus apart (see Figure 1.6).

lr Tﬁe fs‘l:mhg nuclear forre isan atnacmre

Mmmmﬂﬁewpﬂmﬁmm
-mqnudeons:sveqmaﬂ{mabwt tp
~r = 10" m or less). For larger separations,
the nuclear force becomes so small as to be
negligible - we ﬁyﬂlatthenudmﬁm:e '
hnkaslmmng

The experimental evidence for the properties of
the nuclear force comes from scattering

In a helium-4 nucleus, Coulomb
forces push the protons apart,

]
There must be forces between
nucleons pulling them together.
Gravitational forces are far too small,

Figure 1.6 There is an attractive force between
nucleons that keeps them bound inside the
nucleus.

experiments in which electrons of energy equal to
about 200 MeV (in later experiments neutrons
were also used) are allowed to hit nuclei and their
scattering is studied. If we make the assumption
of short-range forces, we obtain agreement with
the data. A result of these experiments is that the
nuclear radius R is given by

R=12xA"%10""m

where A is the total number of protons and
neutrons in the nucleus (the mass number}).
This implies that the nuclear density is the
same for all nuclei (you will look at this further
in the questions at the end of this chapter). The
short range of the force implies that a given
nucleon can only interact with a few of its
immediate neighbours and not with all of the
nucleons in the nucleus (see Figure 1.7).

Figure 1.7 [rrespective of the size of the nucleus,
any one nucleon is surrounded by the same
number of neighbours, and only those act on 1t
with the nuclear force.
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Acts on Protons only Protons and neutrons Protons and neutrons
Mature Repulsive Attractive (mainly) Attractive/repulsive
Range Infinite Short (107" m) Short {10°" m)
Relative strength 15 1 0"

Table 1.2 Forces operating in the nucleus,

There is one other force acting in the nucleus i
apart from the electrical and strong nuclear
forces. This is the weak nuclear force, a force :
that is responsible for the decay of a neutron
into a proton. The details of this decay (beta
decay) will be examined in the next chapter.
The forces acting in the nucleus are
summarized in Table 1.2.

(Since the masses of subatomic particles are so
small, the gravitational force is irrelevantly
small compared with the other three forces.)

Questions

1 The radius of an atomic nucleus is given by
the expression

R=12x A %107 " m

where A is the mass number of the nucleus.

{a) Use this expression to find the density of a
nucleus of iron (3fFe) in kg m™,

(b} How does this density compare with the
normal density of iron?

{c) If a star with a mass equal to 1.4 times the
mass of our sun (solar mass = 2.0 % 10
kg) were to have this density, what should
its radius be? (Such stars are formed in the
end stage of the evolution of normal stars
and are called neutron stars.)

2 Use the expression for the radius of a nucleus
to show that all nuclei have the same density.

3 Describe carefully how the Geiger-Marsden—
Rutherford experiment gave rise to the

Rutherford model of the atom. Why is the
experiment you just described inconsistent
with Thomson's model of the atom?

Explain why the dark lines of an absorption
spectrum have the same wavelengths as the
bright lines of an emission spectrum for the
same element.

What is an isotope? How do we know that
isotopes exist?

Find the number of neutrons in these nuclei:
igs dpdas 400 . 210
(HL Hes 53Ca3 < 5Pb.

7 What is the electric charge of the nucleus JHe?

10

11

What is meant by the statement that the
energy of atoms is discrete? What evidence is
there for this discreteness?

What do you understand by the statement that
the strong nuclear force has a short range?

What is the dominant force between two
protons separated by a distance of:

{a) 1.0 x 107" m;

(b) 1.0% 107" m¢

Explain why a nucleon feels the strong
force from roughly the same number of
other nucleons, irrespective of the size
of the nucleus.

12 Compare the gravitational force between

two electrons a distance of 107'"% m apart
with the electrical force between them when
at the same separation,



Radioactivity

At the end of the nineteenth century and in the early part of the twentieth, it was
discovered, mainly due to the work of Henri Becquerel and Marie and Pierre Curie, that
some nuclei are unstable. That is to say, nuclei spontaneously emit a particle or particles,
they decay, and become different nuclei. This phenomenon is called radioactivity. It was
soon realized that three distinct emissions lake place, called alpha, beta and gamma
radiations.

Dbjectives

By the end of this chapter you should be able to:

+ describe the properties of alpha, beta and gamma radiations;

« explain why some nuclei are unstable in terms of the relative number of
neutrons to protons;

= define halfHife and find it from a graph;

* solve problems of radioactive decay.

S B e R

The nature of alpha, beta and
gamma radiations

Early experiments with radioactive sources
confirmed that three separate kinds of
emissions took place. Called alpha, beta and
gamma radiations, or particles, these emissions
could be distinguished on the basis of their
different ionizing and penetrating power.

lonization

Alpha, beta and gamma radiations ionize air as
they pass through it; this means they knock
electrons out of the atoms of the gases in the
air. An alpha particle of energy 2 MeV will
produce about 10 000 ion pairs per mm along
its path in air. A beta particle of the same
energy will only produce about 100 ion pairs
per mm in air. A gamma ray will produce about
one ion pair per mm.

By letting these ionizing radiations pass
through regions of magnetic (or electric) fields,

it was seen that two of the emissions were
oppositely charged and the third electrically
neutral (see Figure 2.1).

region of magnetic ficld

radicactive
sOurce o
& &
————
& i)

® .8

Figure 2.1 The existence of three distinct
emissions is confirmed by letting these pass
through a magnetic field and observing the
three separate beams.

Alpha particles

The positive emissions were called alpha
particles and were soon identified as nuclei of
helium in an experiment by Rutherford and
Rhoyd. By collecting the gas that the alpha
particles produced when they came in contact
with electrons and analysing its spectrum, its

b . |
A
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properties were found to be identical to those of
helium gas. Thus, the alpha particles have a
mass that is about four times the mass of the

hydrogen atom and an electric charge equal to
+2e.

Beta particles

The negative emissions (beta particles) were
identified as electrons (charge —¢) by experiments
similar to Thomson's ¢ /m experiment, which
measured the charge-to-mass ratio. (Actually,
the measured charge-to-mass ratio for the beta
particles decreased slightly from the standard
value as the speed of the betas increased. This is
consistent with the theory of special relativity,
which states that the mass of an object
increases as the speed becomes comparable to
the speed of light. This was an early test of the
theory of relativity.)

Gamma rays
The electrically neutral emissions are called
gamma rays and are photons (just like the
photons of ordinary electromagnetic radiation)
with very small wavelengths. Typically these
wavelengths are smaller than 107" m, which is
smaller than X-ray wavelengths. This
identification was made possible through
diffraction experiments in which gamma rays
from decaying nuclei were
directed at crystals and a
diffraction pattern was

=
L

rangec distance

Figure 2.2 The penetration of matter by alpha
particles of a fixed energy. The number of
particles transmitted falls sharply to zero after a
distance called the range. Particles of higher
energy will have a larger range.

while gamma particles will easily penetrate
metallic foils; if they are energetic enough they
will be stopped only by many centimetres of
lead.

Further studies show that alpha particles have
specific energies, whereas beta particles have
a continuous range of energies. Gamma rays
from a particular nucleus also have a few
discrete values with maximum energies of
about 1 MeV or so. Alphas are rather slow
{about 6% of the speed of light) whereas betas
are very fast (about 98% of the speed of light).
Gammas, being photons, travel at the speed
of light. These findings are summarized in
Table 2.1.

observed on a photographic  Nature Helium nucleus  (Fast) electron Photon
plate placed on the other Charge +2p =iy 0
SldE ﬂf Lh.E CI‘}'SIE[].. Mass 6.64 % “}—1‘! 'kg 9.1 % 10 H kg 0

Penetrative power A few cm of air A few mm of metal  Many cm of lead
Absﬂ'rptm“ lons per mm of air 10 000 100 1
Alpha particles are the for 2 MeV particles
easiest to absorb. A few Detection Causes strong Causes Causes weak
centimetres of air will stop fluorescence fluorescence fluorescence
maost alpha particles (see Affects Affects Affects
Figure 2.2). Beta particles photographic film  photographic film phatographic film
will be stopped by a few Is affected by Is affected by Is not affected by

electric and electric and electric and

centimetres of paper or a
thin sheet of metal (a few
millimetres in thickness)

magnetic fields

magnetic fields magnetic fields

Table 2.1 Properties of alpha, beta and gamma radiations.
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Detecting radiation

One way to detect radiation is to take advantage

of their ionizing effect. In the Geiger-Muller
(GM) tube (Figure 2.3), radiation enters a
chamber through a thin window. The chamber
is filled with a gas, which is ionized by the

incoming radiation. The positive ions accelerate

toward the earthed casing and the electrons
toward the positive electrode (kept at a few

hundred volts) and so more ions are created as a
result of collisions with the gas molecules. This

registers as a current in the counter connected
to the GM tube. The counter can also turn the
current into an audible sound, giving a ‘click’
whenever an ionizing particle enters the tube.

case edrthed

radiation

puei'll:li'il'c! y
charged
electrode

Lo counter

—_—

Figure 2.3 A Geiger-Miiller tube for detecting

ionizing radiation.

A similar principle
is also used in the
ionization chamber,
Gas contained in
the chamber is
ionized by
incoming
radiation and the
current so
produced is a
measure of the
amount of
radiation entering
the chamber.

Segre plots

There are about 2500 nuclides (nuclei with a

specific number of protons and neutrons), but
only about 300 of them are stable; the rest are

| unstable (i.e. radioactive). Figure 2.4 is a plot of
neutron number versus proton number (called

a Segre plot) for the stable nuclei. The straight

line corresponds to nuclei that have the same
number of protons and neutrons. The plot

shows that stable

nuclei have, in general,

more neutrons than protons, As the number
of protons in the nucleus increases, the
electrostatic repulsion between them grows

as well, but the strong nuclear force does not
grow proportionately since it is a short-range
force. Thus, extra neutrons must be put in

the nucleus in order to ensure stability
through an increased nuclear force without
participating in the repulsive electric force.
{On the other hand, too many neutrons will also
make the nucleus unstable by energetically
favouring decays of neutrons into protons -
hence there is a limit as to how large a nucleus

| can get).

neutron neutron
mumber, titmber,
M ja0s ¥ a0
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Figure 2.4 A Segre plot of stable nuclides.
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Radioactive decay equations

Alpha decay
An example of alpha decay is that of uranium
decaying into thorium:

280 — Z4Th + jag

We say that the nucleus of uranium, being
unstable, decayed into a nucleus of thorium
and a nucleus of helium. Helium nuclei, being
much lighter than thorium, actually move away
from the uranium nucleus with a certain
amount of kinetic energy. The energy of the
alpha particle emitted can be either one
specific value or a series of specific energy
values (a discrete spectrum of energies). Note
that in the reaction representing this decay, the
total atomic number on the right-hand side of
the arrow matches the atomic number to the
left of the arrow. The same holds also for the
mass number. This is true of all nuclear decays.
Other examples are

224 agha — 2?E'Rn -+ 2&'

3P0 — 2BPb + 3

Beta decay
The second example of a radioactive decay is
that of beta decay, such as

%oTh — *3/Pa+ Je + e

MNote the appearance of the electron (the beta
particle) in this decay. The last particle (the
electron antineutrino) is included for
completeness and need not concern us further
here. Unlike alpha decay, the energy of the
emitted beta particle has a continuous range of
energy, a continuous spectrum. Note again how
the atomic and mass numbers match. This is a
decay of a nucleus of thorium into a nucleus of
protactinium. Other examples are

214 ph _, Z4Bi 1 % 4 05,

He—- BN+ Yo+ 5

Gamma decay
The third example of a decay involves the
emission of a photon:

’}H Ll’ ZSEu 1. Dy

The star on the uranium nucleus on the left
side of the arrow (the decaying nucleus) means
that the nucleus is in an excited state, very
much like a hydrogen atom in an energy state
above the ground state. Nuclei, like atoms, can
only exist in specific energy states. There exists
a lowest energy state, the ground state, and
excited states with energies larger than that
of the ground state. Whenever a nucleus
makes a transition from a high to a lower
energy state, it emits a photon whose energy
equals the energy difference between the
initial and final energy states of the nucleus.
The typical energies of nuclear states are a

few million electronvolts (MeV). This means
that the emitted photon in a nuclear
transition will have an energy of the order of a
few million electronvolts and will thus have a
wavelength of

_ ke
T AE

where AE is the photon's energy, h is Planck’s
constant (6.63 x 107 ] s) and ¢ is the speed of
light. Substituting, say, 1 MeV for this energy,
we find A = 1.2 x 10°" m. In contrast to the
photons in atomic transitions, which can
correspond to optical light, these photons have
very small wavelengths. They are called gamma
rays.

The changes in the atomic and mass numbers
of a nucleus when it undergoes radioactive
decay can be represented in a diagram of
mass number against atomic number. A
radioactive nucleus such as thorium (Z = 90)
decays first by alpha decay into the nucleus of
radium (7 = 88). Radium, which 1s also
radioactive, decays into actinium (£ = 89) by
beta decay. Further decays take place until
the resulting nucleus is stable. The set of
decays that takes place until a given nucleus
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80 81 82 B3 B4 B5 86 87 B8 89 90 91 92
— beta decay Zz

/ alpha decay

Figure 2.5 The decay series of thorium (£ = 90,
A = 232). One alpha decay reduces the mass
number by 4 and the atomic number by 2. One
beta decay increases the atomic number by one
and leaves the mass number unchanged. The
end result is the nucleus of lead (£ = 82,
A = 208).

ends up as a stable nucleus is called the decay
series of the nucleus. Figure 2.5 shows the
decay series for thorium. Successive decays
starting with thorium end with the stable
nucleus of lead.

Example question

O BT ST S TR RN N b
A nucleus 7X decays by alpha decay followed by
two successive beta decays. Find the atomic and
mass numbers of the resulting nucleus.

Answer
The decay equation is

Ax — .ﬂ.—-t\.,u

¥ w+2 e

s0 the atomic number is Z and the mass number
is A—4.

The law of radioactive decay

[ | | o1l
204 1
| [ | NN

We now come to the details of a decay. Suppose
we concentrate on the particular decay

238U — %3Th + Ja, and that we are given a
container with a specific number of atoms of
uranium.

» The law of i raﬂmm mmﬁ%

:h:iﬁji-nfflp E m.twm ﬂ-“ ‘l'-

- second i therateof decay)is
'ﬁﬂnpﬁﬂmﬂmmnmwﬁw,i: :
Mm’thmmtmw:::‘:::.i jar

This is a form of a physical law implying a
statistical or random nature. This means that we
cannot predict exactly when a particular nucleus
will decay. But, given a large number of nuclei,
the radioactive decay law can be used to predict
the number of atoms that will have decayed
after a given interval of time. The radioactive
decay law leads to an exponential decrease of
the number of decaying nuclei, Figure 2.6
shows an example of a radioactive decay in
which the initial number of nuclei present is
200 x 10%. As time passes, the number of
undecayed nuclei is decreased. After a certain
interval of time (5 s in this example), the
number of undecayed nuclei left behind is half
of the original number. If another 5 s goes by,
the number of undecayed nuclei is reduced by
another factor of 2, which is a factor of 4
relative to the original number at t = 0. This
half-life is a general property of the decay law.

rmmamm@yﬁp{m

mhmmmmmmtpﬂam
2 """,'thenumbmhfnudﬁfﬁmhmm;m;g
‘,_ﬁg@mmmmwamaﬁgm- sTabes

Thus, consider a decay in which nuclei X decay
into nuclei Y (the daughter nuclei) by, say, alpha
emission. Assume that nuclei Y are stable. Then
as time goes by, the number of X nuclei is
reduced (Figure 2.6a). The number of Y nuclei is
increasing with time, as shown in Figure 2.6b.

The halflife can be found from the graph as
follows. The initial value is 200 x 10?® nuclei.
We find half of this value, i.e. 100 x 10, and
see that 100 x 10%® corresponds to a time of 5 s.
This is the halflife.

We may also define a concept useful in
experimental work: that of decay rate or
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Figure 2.6 (a) The number of nuclei X that have
not yet decayed as a function of time. This is an
exponential decay curve. (b) The number of the
daughter nuclei Y is increasing.

activity A — the number of nuclei decaying per
second. It can be shown that activity obeys the
same decay law as the number of nuclei, soin a
period equal to a half-life the initial activity is
reduced by a factor of 2. The unit of activity is
the becquerel (Bq): 1 Bq is equal to one decay
per second.

Example questions

Q! TIPS S RS LI R STTEY
An isotope has a half-life of 20 min. If initially
there is 1024 g of this isotope, how much time
must go by for there to be 128 g left?

Answer

The nuclei have been reduced by a factor of 8.
Thus, 3 half-lives or 60 min must have gone by.

()} FSaT ST I EYR S IS 58]
The activity of a sample is initially 80 decays per
minute, It becomes 5 decays per minute after 4 h.
What is the hali-life?

Answer

The activity is reduced from 80 to 5 decays in
4 half-lives. The half-life is 1 h.

Qq' S ssrssra =t i iFndeiamante == -t 2t =c &4l
The activity of a sample is 15 decays per minute.
The half-life is 30 min. When was the activity

60 decays per minute?

Answer
One half-life before the sample was given to us
the activity was 30 decays per minute and one

half-life before that it was 60 decays per minute,
that is 60 minutes before.

The meaning of a halflife can also be understood
in the following sense. Any given nucleus has a
50% chance of decaying within a time interval
equal to the half-life. If a halflife goes by and the
nucleus has not decayed, the chance of a decay
in the next halflife is still 50%. Thus, the
probability that a nucleus will have decayed by
the second halflife is (see the tree diagram in
Figure 2.7) § + 4 x § = 3 = 0.75 or 75%.

I e not
decay

does nol

decays -.Ij- xqi- :—A-

+==0.75

=
bl

1
.
Figure 2.7 Tree diagram for nuclear decay,

(There is more on radicactive decay in
Chapter 6.6.)

Questions

1 In a study of the intensity of gamma rays from
a radicactive source it is suspected that the
counter rate C at a distance d from the source
should behave as

C“(dlmy

where d, is an unknown constant. If a set of
data for C and d is given, how should these
be plotted in order to get a straight line?
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2

W

The intensity of gamma rays of a specific
energy {(monochromatic rays) falls off
exponentially with the thickness x of the
absorbing material

[=Le™

where [, is the intensity at the face of the
absorber and u a constant depending on the
material. (See Figure 2.8.)

SAMNA TAYS

Figure 2.8 For question 2.

How should intensity 7 and thickness x be
plotted in order to allow an accurate
determination of the constant u?

A radioactive source has a half-life of 3.00 min.
At the start of an experiment there was 32.0 mg
of the radioactive material present. How much
will there be after 18.0 min?

The initial activity of a radioactive sample is
120 Bq. If after 24 h the activity is measured
to be 15 Bq, find the hali-life of the sample.

Beryllium-8 (§Be) decays into two identical
particles. What are they?

The only stable nuclei with more protons than
neutrons are those of hydrogen and helium-3
(3He). Why do you think there are so few?

An alpha particle and an electron with the
same velocity enter a region of a uniform
magnetic field at right angles to the velocity.
Explain why they are deflected in opposite
directions. Find the ratio of the radii of the
circular paths the particles are deflected into.

Tritium ({H) is a radioactive isotope of
hydrogen and decays by beta decay. Write

10

11

12

13

14

15

16

17

18

down the equation for the reaction and name
the products of the decay.

Nitrogen ("IN) is produced in the beta decay
of a radioactive isotope. Write down the
reaction and name the particles in the reaction.

Bismuth (*}1Bi) decays by beta and gamma
emission. Write down the reaction and name
the nucleus bismuth decays into.

Plutonium (5;Pu} decays by alpha decay.
Write down the reaction and name the
element produced in the decay.

A nucleus (3X) decays by emitting two
electrons and one alpha particle. Find the
atomic and mass numbers of the produced
nucleus.

Name the two missing particles in the reaction
TNa — SNe+72+ 7.

Discuss how one could confirm that a
particular element emits:

{a) alpha particles;

(b} beta particles;

{c) gamma rays.

The track of an alpha particle in a cloud
chamber was measured to be 30 mm, The
energy required to produce an ion pair is
about 32 eV, on average. Assuming that alpha
particles create 6000 ions per mm along their
path, estimate the energy of the alpha particle.

Many of the most stable nuclei have an even
number of protons and an even number of
neutrons. Can you suggest a reason why this
might be so?

Explain why the heavy stable nuclei tend to
have many more neutrons than protons.

Referring to the Segre plot in the tex

(Figure 2.4), what would be a likely decay for
an unstable nucleus that has a large neutron-
to-proton ratiod Where on the plot would such
a nucleus be? What would be the likely decay
for an unstable nucleus that has a small
neutron-to-proton ratiof Where on the plot
would this nucleus be?



Nuclear reactions

This chapter is an introduction to the physics of atomic nuclei. We will see that the sum of
the masses of the constituents of a nucleus is not the same as the mass of the nucleus itself,
which implies that the nucleus has enormous amounts of energy stored in it. Methods used

to calculate energy released in nuclear reactions are presented.

' Objectives

By the end of this chapter you should be able to:

« define the unified mass unit;

+ state the meaning of the terms mass defect and binding energy and solve

related problems;

= write nucear reaction equations and balance the atomic and mass numbers;
* understand the meaning of the graph of binding energy per nucleon versus

mass number;

* state the meaning of and difference berween fission and fusion;
* understand that nuclear fusion takes place in the core of the stars;
» solve problems of fission and fusion reactions.

The unified mass unit

In nuclear physics, it is convenient to use a
smaller unit of mass than the kilogram. We
define a new unit called the unified atomic mass
unit, u for short. It is defined to be 7; of the
mass of an atom of carbon-12, "EE. A mole of
carbon '$C is 12 g and the number of molecules
is the Avogadro constant, therefore the carbon-
12 atom has a mass M given by

6.0221367 x 107 x M = 12g

12 5
= G0meT <108 <0 ke

=1.992648 x 107%° kg

M

Hence
Tu= :—2 (1.992648 x 107 kg)
= 1.6605402 x 10~%" kg

Example question

Q1 TR R e e e T YTl
Find in units of u the masses of the proton,
neutron and electron (use Table 3.1).

Electron 91093897 ¥ 10" kg

Proton 16726231 % 1077 kg

Neutron 16749286 % 1077 kg
Table 3.1.

Answer

From the table of the masses in kilograms
(Table 3.1) we find

m, = 1.007276 u
my, = 1.008665 u
m, = 0.0005486 u
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The mass defect and
binding energy

To find the mass of a particular nucleus we
have to subtract the mass of the electrons in the
atom from the mass of the atom. If there are Z
electrons in the atom, then

Maudews = Matom — £,

The mass of the atom is obtained from the
periodic table and m, is given above. We can
find, for example, that the mass of the nucleus
of helium is

Mouceus = 4.0026 — 2 x 0.0005486
= 4.00156u

We now recall that the helium nucleus is made
up of two protons and two neutrons. If we add
up their masses we find

2my + 2m, = 4.0320u

which is larger than the mass of the nucleus by
0.0304 u. This leads to the concept of mass
defect. '

Example question
Q2 EFFFBTETHTE TR S ST
Find the mass defect of the nucleus of gold,
Tﬂ?ﬁu
gL,
Answer

From the periadic table, the mass of the atom of
gold is 196.967 u, and since it has 79 electrons
the nuclear mass is

196.967 u — 79 X 0.0005486 u = 196.924 u.

The nucleus has 79 protons and 118 neutrons,
50

8={79x 1.007276+4+ 118 x 1.008665 — 196.924) u
=1.67 u

Einstein’s mass-energy formula

Where is the missing mass? The answer is given
by Einstein's theory of special relativity, which
states that mass and energy are equivalent and
can be converted into each other. Einstein's
famous formula from 1905 reads

E =mc*

where ¢ stands for the speed of light. The mass
defect of a nucleus has been converted into
energy and is stored in the nucleus. This energy
is called the binding energy of the nucleus, and
is denoted by E . Thus:
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It is convenient to find out how much energy
corresponds to a mass of 1 u. Then, given a
nuclear mass in u, we will immediately be able
to find the energy that corresponds to it. Thus,
an energy of 1 u is

Tu x ¢ = 1.6605402 x 107% x (2.9979 x 10%)% |
= 1.4923946316 x 107'%)

Changing this to electronvolts, using

1 eV =1.602177 = 1077

gives an energy equivalent to a mass of 1 u of

1,4923946316 x 10710 )
e AR Y F e BB B YO8
1.602177 x 1077 jev~! )i
= 931.5 MeV

{one MeV is one million electronvolts,
1 MeV = 10" eV). So

1 u=951.5MeV

Example questions

Q:] R S S - A S N T S P T I T T F VYT FTE
Find the energy equivalent to the mass of the
proton, neutron and electron.

Answer

The masses in terms of u are m, = 1.0073 u,
m, = 1.0087 u and m. = 0.0005486 u. Hence
the energy equivalents are, respectively,

938.3 MeV, 939.6 MeV and 0.511 MeV,

()4 SrrmnsTsENn M ST T I T T 1
Find the binding energy of the nucleus of carbon-12,

Answer

The nuclear mass is

12.00000 u — 6 X 0.0005486 u = 11.99671 u
The mass defect is

6 X 1.007276 u + 6 X 1.008665 u — 11.99671 u
= 0.09894 u

{the nucleus has & protons and 6 neutrons). Hence
the binding energy is

0.09894 x 931.5 MeV = 92.2 MeV

The binding energy curve

We saw on the previous page that the mass
defect of helium is 0.0304 u, which corresponds
therefore to a binding energy of

0.0304 x 931.5 MeV = 28.32 MeV

(The alpha particle has an unusually large
binding energy compared with nuclei of
roughly the same mass. This accounts for its
exceptional stability and the fact that unstable
nuclei decay by emitting alpha particles.) There
are four nucleons in the helium nucleus so the
binding energy per nucleon is 28.32/4 = 7.1 MeV.
For carbon, we found a binding energy of
92.159 MeV, giving a binding energy per
nucleon of 7.68 MeV.

» We find that most nuclei have a binding
energy per nucleon of approximately 8 MeV.

This is shown in Figure 3.1.

This curve is at the heart of nuclear physics.
The curve has a maximum for A4 = 62
corresponding to nickel. As we shall soon see,
this curve tells us that if a heavy nucleus
(heavier than nickel) splits up into two lighter
ones or if two light nuclei (lighter than nickel)
fuse together, then energy is released as a
result. This is of fundamental importance and is
the basis for nuclear fission and nuclear fusion,
respectively. To understand all this we must
first see what happens from the energy point of
view when a nucleus decays.

Energy released in a decay
Let us consider the decay of radium by alpha
particle emission (see Figure 3.2):

Z2fRa — 22Rn + ja

For any decay, the total energy to the left of
the arrow must equal the total energy to the
right of the arrow. Here total energy means
the energy corresponding to each mass
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Figure 3.1 The binding energy per nucleon is almost constant for most nuclei.

according to Einstein’s formula plus whatever
kinetic energy each mass has. If the decaying
radium nucleus is at rest, then the total
energy available is simply Mc*, where M is the
mass of the nucleus of radium. To the right of
the arrow, we have the energies corresponding
to the masses of the radon and helium nuclei
plus any possible kinetic energy: the produced
nuclei are moving.

decays into mdon

radium
alpha

particle

Figure 3.2 The energy released in a nuclear
reaction is in the form of kinetic energy of the
products.

Thus, to be at all possible, the decay must be
such that at the very minimum the energy

corresponding to the radium mass is larger
than the energies corresponding to the radon
plus alpha particle masses. Let us check if this
is true. We need the masses of the nuclei that
appear in the reaction, namely radium, radon
and helium.

If we use the periodic table to find the masses, we
must remember that the periodic table gives
atomic masses not nuclear masses. Thus, we must
subtract from each atomic mass the mass of the
electrons in the atom.

However, the atomic number is conserved (i.e.
it is the same before and after the decay) and
equals the number of electrons in the atom. It
follows that the number of electron masses
that must be subtracted from the atomic mass
to the left of the arrow is the same as the
number of electron masses that must be
subtracted from the right. Thus, as long as we
are interested in mass differences, as we are here,
it is enough to use atomic masses instead of
nuclear masses.
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According to the periodic table:

mass of radium = 226.0254 u
mass of radon = 222.0176 u
+  mass of helium =  4.0026 u

sum = 226.0202 u

We see that the mass of radium exceeds that of
radon plus helium by 0.0052 u. Thus, there is an
amount of energy released in the form of
kinetic energy of radon and helium of

0.0052 x 931.5 MeV = 4.84 MeV. If 50 g of
radium were to decay in this way, the total
energy released would be N = 4.84 MeV where
N is the total number of nuclei in the 50 g of
radium. In 50 g of radium there are

50

¢ = 0.22 mol and so

N=022x6x10"=13x10"
Hence the total energy released is

F =1.3x 10" x 4.84 MeV
= 6.3 x 10 MeV
~ 10" )
The momenta of radon and helium are opposite
in direction and equal in magnitude by the law
of conservation of momentum. (We assume that

the decaying radium nucleus is at rest, so its
momentum is zero.) Thus

Mr:u‘h'ul Veadon = Ml'ufhl.lm]"'hdlum

Therefore

Vhelium Mradnn
Veadon JI1"")r|'|-.'lim1'|

the velocity of radon is smaller than the
velocity of helium by the ratio of the masses:
approximately 55. (As an exercise you can show
that the ratio of kinetic energies of the helium
to the radon nuclei is also 55.)

Let us now re-examine these findings in terms
of the binding energy curve. For the decay to
take place, the mass of the decaying nucleus

has to be greater than the combined masses of
the products. This means that the binding
energy of the decaying nucleus must be less
than the binding energies of the product
nuclei. This is why radioactive decay is possible
for heavy elements lying to the right of nickel
in the binding energy curve.

Nuclear reactions

If a nucleus cannot decay by itself, it can still do
so if energy is supplied to it. This energy can be
transferred to the nucleus by a fast-moving
particle that collides with it. For example, an
alpha particle colliding with nitrogen produces
oxygen and hydrogen (i.e. a proton):

14 4 7 I
?N+2&I e RD+ rp

(see Figure 3.3). This is an example of a nuclear
reaction. Note how the atomic and mass
numbers match as they did in nuclear decays.
This is a famous reaction called the
transmutation of nitrogen; it was studied by
Rutherford in 1909. Note that if we add up the
masses to the left of the arrow we find

18.0057 u, whereas the masses to the right are
18.0070 u (i.e. larger). Thus, this reaction will
only take place if the alpha particle has enough
kinetic energy to make up for the imbalance in
mass between the two sides.

Ck alpha

ives
oxygen
nitrogen

Figure 3.3 An alpha particle colliding with nitrogen
produces oxygen and a proton

{Actually, the required minimum kinetic energy
of the alpha particle has to be bigger than the
energy equivalent of the mass difference
between the two sides of the reaction. This is
because the products of the reaction themselves
will have kinetic energy.)
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In a reaction in which four particles participate

A+B—C4+D

energy will be released if the quantity Am given
by

A — (ma 4+ mg) — (Mg + mp)

is positive (i.e. if the total mass on the left is
larger than the total mass on the right). The
amount of energy released is then equal to

AF = (am)c?

There are two kinds of energy-producing
nuclear reactions and we consider them
separately in the following sections.

Nuclear fission

Nuclear fission is the process in which a heavy
nucleus splits up into lighter nuclei. When a
neutron is absorbed by a nucleus of uranium-
235, uranium momentarily turns into uranium-
236 according to the reaction

b 095 236
on + “gU — 52U

Uranium-236 then splits into lighter nuclei.
This is the fission reaction. A number of
possibilities exist as to what these nuclei are.
One possibility is

HBa 4+ 80Kr 4+ 30n

The production of neutrons is a feature of
fission reactions. The produced neutrons can
be used to collide with other nuclei of
uranium-235 in the reactor, producing more
fission, energy and neutrons. The reaction is
thus self-sustaining — it is called a chain
reaction. For the chain reaction to get going a
certain minimum mass of uranium-235 must
be present, otherwise the neutrons escape
without causing further reactions — this is
called the critical mass.

The energy released can be calculated as shown
in Table 3.2.

mass of uranium plus neutron = 236.0526 1

mass of products
= 14392292 u + 88.91781 u

+ 3 ¥ 1008665 u = 235.8667250 u
mass difference = (L185875 u
encrgy released = 0.185875 * 931.5 MeV
= 173.14 MeV
Table 32.

This energy appears as kinetic energy of the
products.

Thus, an energy of about 173 MeV per
fissioning nucleus of uranium is released. This
is a lot of energy! A mass of 1 kg of uranium-
235 undergoing fission would produce an
amount of energy that can be found as follows:
1 kg is 1000/235 mol of uranium and thus
contains (1000/235) x 6 x 10 nuclei. Each
nucleus produces about 173 MeV of energy and
thus the total is (1000/235) x 6 x 10 x 173
MeV or about 7 x 10" J. In a nuclear reactor,
the release of energy is done in a controlled
way. If the rate of neutron production is too
high, too much energy is produced in a very
short time. This is what happens in a nuclear
bomb.

Note that the fission process begins when a
neutron collides with a nucleus of uranium-
235. An alpha particle cannot be used to start
this process because its positive charge would
be repelled by the positive charge of the
uranium nucleus and so would not lead to the
capture of the alpha. An electron, on the other
hand, would easily be captured but its small
mass would not perturb the heavy nucleus
sufficiently for fission to start.

_Nudear fusion

Nuclear fusion is the joining of two light nuclei
into a heavier one with the associated production
of energy. An example of this reaction is:

TH + TH — 3He + §n
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where two deuterium nuclei (isotopes of
hydrogen) produce helium-3 (an isotope of
helium) and a neutron. Computing masses to
the left and right of the reaction arrow as in
Table 3.3 we can find the energy released.

2 ¥ mass of deuterium = 40282 u
mass of helium + neutron = 4.0247u
mass difference = 0.0035 u
energy released = 0.0035 x 931.5 MeV
= 3.26 MeV
Table 3.3.

A kilogram of deuterium would thus release
energy of about 10™ ], which is comparable to
the energy produced by a kilogram of uranium
in the fission process.

Example question

()7 s e YT T=—————
Another fusion reaction is 4|H — {He + 2% +

2v, + 1y, where four hydrogen nuclei fuse into a
helium nucleus plus two positrons (the
antiparticle of the electron — same mass, opposite
charge), two electron neutrinos and a photon.
Calculate the energy released in this reaction,

Answer

We must find the masses before and after the
reaction.

Mass of 4 protons (hydrogen nuclei)
=4 X 1.007276 u = 4.029104 u

Mass on right-hand side
= (4.0026 — 2 = 0.0005486) u
+ 2 ¥ 0.0005486 u = 4.002600 u

Mass difference = 0.026504 u

This gives an energy of 24.7 MeV. The two
positrons annihilate into energy by colliding with
two electrons giving an additional 2 MeV (= 4 x
0.511 MeV), for a total of 26.7 MeV.

For the light nuclei to fuse, very large
temperatures are required. This is so that the
electrostatic repulsion between the two nuclei

that fuse is overcome. The enormous
temperature (recall the kinetic theory of gases)
causes the nuclel to move fast enough so as to
approach each other sufficiently for fusion to
take place. The very hot material (over ten
million kelvin) undergoing fusion is in a state
called plasma (ionized atoms). Plasma, being
very hot, cannot come into contact with
anything else (either because it causes it to melt
or because it will result in heat losses) and
therefore has to be contained by unusual
methods such as magnetic fields in big
machines called tokamaks. There are serious
unsolved problems with the prolonged
confinement of plasmas and this is one reason
why nuclear fusion, still, is not a commercially
viable source of energy. Commercial energy
from the nucleus comes now only from the
fission process, which unlike fusion, however, is
environmentally suspect.

Fusion in stars

The high temperatures and pressures in the

interior of stars make stars ideal places for
nuclear fusion. As we saw in the previous
section, high temperatures are required so
that the nuclei have sufficiently large kinetic
energy to approach each other, overcoming
the electrostatic repulsion due to their
positive charges. The high pressure ensures
that sufficient numbers of nuclei are found
close to each other, thus increasing the
probability of them coming together and
fusion taking place.

The reaction 4]H — He + 2%e + 2v, 4 0y is a
typical reaction that takes place in stellar
cores, Nuclear fusion is the source of energy
for a star; it prevents the star from collapsing
under its own weight and provides the energy
the star sends out in the form of light and
heat, for example. Stars are, in fact, element
factories, producing, for example, all the
elements that our bodies are made of. More
details on this can be found in Option E on
Astrophysics.

Fusion and fission processes are summarized in
Figure 3.4.
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[ = can become more stable by fission
[ = can become more stable by fusion
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Figure 3.4 When a heavy nucleus splits up, energy
is released because the produced nuclei have a

hig

her binding energy than the original nucleus.

When two light nuclei fuse, energy is produced
because the products again have a higher

bin

ding energy.

1

Find the binding energy and binding energy
per nucleon of the nucleus 5iNi. The atomic
mass of nickel is 61,928348 u.

How much energy is required to remove one
proton from the nucleus of '0? A rough
answer to this question is obtained by giving
the binding energy per nucleon. A better answer
is obtained when we write a reaction thal
remaves a proton from the nucleus. In this case
180 — Ip+ "IN, Find the energy required for
this reaction to take place. This is the proton
separation energy. Get both values and
compare them. (The atomic mass of oxygen is
15.994 u; that of nitrogen is 15.000 u.}

What is the energy released in the beta decay
of a neutron{

The first excited state of the nucleus of uranium-

235 is 0.051 MeV above the ground state.

(a) What is the wavelength of the photon
emitted when the nucleus makes a
transition to the ground state?

{(b) What part of the spectrum does this
photon belong tof

Calculate the energy released in the alpha

decay *3)Th — “}iRa 4 jHe. (The atomic mass

11

12

13

of thorium is 234.043596 u; that of radium is
230.03708 w.)

Assume uranium-236 splits into two nuclei of
palladium-117 {Pd). (The atomic mass of
uranium is 236.0455561 u; that of palladium
i5 116.9178 u.)

ia) Write down the reaction.

(b) What other particles must be produced?
(c) What is the energy released?

One possible outcome in the fission of a
uranium nucleus is the reaction
WU+ In - Mo+ 'Bla + 2+
{a) What is missing in this reaction?
{b} How much energy is released?
{Atomic masses: U = 235.043922 u;
Mo = 94905841 u; La = 138906349 u.)

Another fission reaction involving uranium is
U+ gn — PZr+ 'BTe + 350

Calculate the energy released. (Atomic
masses; Ll = 235.043922 u; Zr = 9791276 u;
Te = 1349165 u.)

Calculate the energy released in the fusion
reaction 1H + {H — JHe + \n. (Atomic masses:
TH = 2.014102 u; {H = 3.016049 u;

fHe = 4.002603 u.)

In the text, it was stated that the reaction

41H —= He + 2% + 2w + 3y is the
mechanism by which hydrogen in stars is
converted into helium and that the reaction
releases about 26.7 MeV of energy. The sun
radiates energy at the rate of 3.9 x 10°°' W
and has a mass of about 1.99 x 10*" kg, of
which 75% is hydrogen. Find out how long it
will take the sun to convert 12% of its
hydrogen into helium,

In the first nuclear reaction in a particle
accelerator, hydrogen nuclei were accelerated
and then allowed to hit nuclei of lithium
according to the reaction ;H + (Li —

‘He + *He. Find the energy released. (The
atomic mass of lithium is 7.016 u.)

Outline the role in nuclear fusion reactions of:
(a) temperature; (b) pressure.

Show that an alternative formula for the mass
defectis § = ZMy + (A — Z) my — Myom
where My, is the mass of a hydrogen atom and
M, is the mass of a neutron.
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14 Consider the nuclear fusion reaction invalving where Ey,., Ep and Fy are the binding
the deuterium (;0) and tritium (]T) isotopes of energies of helium, deuterium and tritium,
hydrogen: respectively,

D437 — $He + )n (b) Show that the expression for (s can be
rewritten as
The energy released, @y, may be calculated in Q = (Ep + Erg)— Eu

the usual way, using the masses of the particles

involved, from the expression where Fz, F. and F, are the binding

energies of zirconium, tellurium and

Q = (Mp + My — My, — m,)c’ uranium, respectively.

{c) Results similar to the results obtained in
(a) and (b) apply to all energy-releasing

U+ n = BZr + '5Te + 3)n fusion and fission reactions. Use this fact

and the binding energy curve in Figure 3.1
| to explain carefully why energy is released
G = (My — Mz, — My, — 2m,)c? in fusion and fission reactions.

Similarly, in the fission reaction of uranium

the energy released, (,, may be calculated from

{a) Show that the expression for Q; can be
rewritten as

Ch = Epe — (Ep + Ey) |
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Interactions of matter
with energy

The photoelectric effect was one of the first signs that classical physics was inadequate
when applied to the microscopic world. This chapter discusses the photoelectric effect
and other aspects of the interaction of matler with energy, leading to the duality of
matter and energy.

Dbjectives

By the end of this chapter you should be able to:

* describe the photoelectric effect;

» describe which aspects of this effect cannot be explained by classical
physics and how the new physics introduced by Einstein provides
explanations for them;

* understand the meaning of the terms stopping voltage, threshold frequency
and work function;

+ state the meaning of the term photon and use the equation for its energy,
E=hf;

» solve problems on the photoelectric effect, el, = hf — ¢

« state the meaning of the term wave-particle duality;

+ state de Broglie's formula, i = :L and use it in problems;

* describe the Davisson-Germer experiment and understand its significance.

'I'he phOtOElEttl’i( effe,ct the attraction of the nuclei and leave the

surface altogether. An apparatus to investigate
When light (or other electromagnetic radiation) this effect (first used by R. Millikan) is shown in
falls on a metallic surface, electrons may be Figure 4.2.

emitted from that surface in a phenomenon
known as the photoelectric effect. An
electroscope connected to the surface becomes
positively charged when light falls on the metal
(see Figure 4.1).

It consists of an evacuated tube, inside which
is the photosurface and across from that a
collecting plate where the emitted electrons
arrive. The photosurface and the collecting
plate are part of a circuit as shown. Light

It is not difficult to imagine that electrons will passes through an opening in the tube and
be emitted, because electromagnetic radiation falls on the photosurface, and the emitted
contains energy that can be transferred to electrons move toward the right, completing
electrons of the atoms of the photosurface, thus the circuit; thus, an electric current flows.

enabling them to pull themselves away from The magnitude of the current can be detected
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zine plate

gold-leafl
- electroscope

Figure 4.1 A photosurface becomes positively
charged when light falls on it.

I
{:’V 1;:1]|+:I::1ing plane
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¢
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evacuated ube

A/Kariuhlﬂ' voltage

Figure 4.2 Apparatus for investigating the photo-
electric effect. The variable voltage decelerates
the emitted electrons and eventually stops them.

by the galvanometer G. It is readily found that,
as the intensity of the light source increases,
the current also increases. In fact, current and
intensity are directly proportional to each
other. A larger current can be due to either a
larger number of electrons being emitted per
second or electrons with higher speed (or
both). To distinguish between the two cases we
need a method to measure the energy (and
hence speed) of the emitted electrons. This
can be done by connecting a battery between
the photosurface and the collecting plate as
shown in Figure 4.3 (note: pay attention to
where the negative terminal of the battery
goes). By increasing the voltage of the battery

current
red and bright

red and dim

- e
v = + vollage
Y

blue and bright

"

" red and bright

2

voltage

blue ¥V, red V; - +

Figure 4.3 The photocurrent is larger for larger
intensity light source. The stopping voltage
depends on the frequency not the intensity.

we can make the current in the circuit zero.
This is called the stopping voltage, V.. It
follows that the maximum kinetic energy of
the emitted electrons must be el/. We see this
as follows: Let the maximum kinetic energy of
the electrons be [; then the work done in
moving an electron from the cathode to the
collecting plate is ¢V, and from mechanics we
know that the work done is the change in the
kinetic energy of the electron. So

E'V5=Ek

» We find that the stopping voltage stays

‘the same no matter what the umeasiqr

~of the light source is. Thus, the increase

in the current is due to more electrons
) :b&ngenntted The intensity of light has
:'nﬂeﬂfectunthemaxlmumenermfnfthe_ 1
"'electrms{seeﬁgureiﬁ]., ' :

This is a very surprising result and we shall return
to it soon. Another surprise awaits us if we allow
monochromatic light (light of one specific
frequency) to fall on the photosurface. We find
that the stopping voltage depends on the
frequency of the light source. The larger the
frequency, the larger the stopping voltage (i.e. the
larger the energy of the emitted electrons). If the
polarity of the battery is now reversed so that the
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emitted electrons are actually attracted to the
collecting plate, we find that the current increases
but reaches a saturation value, This is because
every single emitted electron is now collected.

If we plot the kinetic energy of the electrons
(which equals eV, versus frequency, we find a
straight line as shown in Figure 4.4a.

& -

Eln. l*.'.- k

photosurface |

photosurface
1

P f f

L

(a) (b

Figure 4.4 (a) The graph of kinetic energy versus
frequency is a straight line. The horizontal
intercept is the critical frequency. (b) When
another photosurface is used, a line parallel to
the first is obtained.

The puzzling feature of this graph is that there
exists a frequency, called the critical {or ~
threshold) frequency [, such that no electrons
at all are emitted if the frequency of the light
source is less than f_, even if very intense light
is allowed to fall on the photosurface. If the
experiment is repeated with a different photo-
surface and the kinetic energy of the electrons
is plotted versus frequency, a line parallel to the
first is obtained, as shown in Figure 4.4b.

Another puzzling observation is that the
electrons are emitted immediately after the
light is incident on the photosurface, with no
apparent time delay.

» We now have three surprising observations:
1 The intensity of the incident light does not
affect the energy of the emitted electrons,
2 The electron energy depends on the
frequency of the incident light, and there
which no electrons are emitted.
3 Electrons are emitted with no time delay.

These three observations are in violation of the
standard laws of physics. According to the laws
of classical electromagnetism, a more intense
beam of light contains more energy and
therefore should cause the emission of more
energetic electrons. Classical electromagnetism
offers no explanation as to why the frequency
of light should affect the electron energy, nor
does it explain why there should exist a critical
frequency.

A very low-intensity beam of light carries
little energy. So an electron might have to
wait for a considerable length of time before
it accumulated enough energy to escape
from the metal. This would cause a delay in
its emission.

The explanation of all these strange
observations was provided by Albert Einstein in
1905.

» Einstein suggested that light (like any other
form of electromagnetic radiation) consists
of quanta, which are packets of energy and
momentum. The energy of one such quantuin
is given by the formula

Es=hf

where [ is the frequency of the
electromagnetic radiation and h =
6.63 % 10-™ | 5 is a constant, known as
Planck’s constant.

These quanta of energy and momentum
are called photons, the particles of light.

(Max Planck had introduced h a few years
earlier in his investigation of the spectrum
of a black body. It is worth pointing out here
that the spectrum of a black body could not
be explained in terms of conventional physics,

| just as the photoelectric experiment could

not.)

This suggestion implies, therefore, that light
behaves in some cases as particles do, but in
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addition the energy of one of the particles vertical axis. Note that the work function and
making up light depends only on the frequency the critical frequency are related by
and not on the intensity. Thus, if a photon of hf, = ¢

frequency [ is absorbed by an electron in the

photosurface, the electron’s energy will increase since £y, = 0 in that case.

by hf. Now, it takes a certain amount of energy. Recalling that the kinetic energy of the
let us say ¢, to free the electron from the pull of electrons is measured in the photoelectric
the nuclei of the atoms of the photosurface. The effect apparatus to be eV, = £,, it follows that:

electron will be emitted (become free) if hf is
bigger than ¢: the difference hf —¢ will simply
be the kinetic energy of the (now] free electron
(see Figure 4.5). That is

Ex=hf—¢ ' ~ thatis, in a graph of stopping voltage
 versus frequency, one obtains a straight
'ﬁl)&ﬂiﬂ'lﬁlﬂ]}!ﬁj&. - st T T
photon fif o electron escapes ' - IS

= / 4 Example questions

' ()] TR SRS SRS IE TN IR TIT e T ST
A photosurface has a work function of 1.50 eV.
Find the critical frequency. If light of frequency
6.1 x 10" Hz falls on this surface, what is the

1—-e—+|

.
&Y

energy JOCX i
Gk energy and speed of the emitted electrons?
LA |
SEve
' "' Answer
e The critical frequency f. is given in terms of the
work function by hi, = ¢ and thus
electron just - @ _ 1.5x1.6x10™"
D escapes *h 6.63 x 10-™
T =3.62 x 10" Hz
1 The kinetic energy of the electron is given by
l E, = hi—d¢, that is
Cnergy -19
Ev=164x107"]=1.03eV
From E, = 1mv’ we find v=6.0 X 10° ms™".
(Note: use joules for E, to find v.)

(1! ETEPEITEETSTITH R R N  HGITET

Figure 4.5 (a) A single photon of light may release Monochromatic light of intensity 4 W and
a single electron from a metal. (b} A more

- l;l .
tightly bound electron needs more energy to wavelength 4 x 10" m falling on a photosurface
release it from the metal. whose critical frequency is 6 x 10" Hz releases

10'" electrons per second. What is the current
collected in the anode? If the intensity of the light

But this is exactly what our discussion of the is increased to 8 W, what will the current be? If
photoelectric experiment gave. The value of ¢ light of intensity 8 W and wavelength 6 x 107" m
(called the work function) is read off the graph, falls on this photosurface, what will the current be

from the intercept of the straight line with the in that case?
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Answer

From /= %7, the definition of electric current, we
find

I=ex 10"

that is

f=16x10"A

If the intensity doubles, so will the current, giving
J=32x107A

We note that the critical wavelength is

3 x 10"
: x]ﬂqﬂ]:Sx 107 m
=

and so if the wavelength becomes 6 x 1077 m, no

electrons will be emitted at all, hence f= 0 then.

7 RO T M O TSI Ty

Light of wavelength 5 x 1077 m falls on a
spherical photosurface whose critical frequency is
5 x 10" Hz. The photosurface is in an insulated
enclosure. What is the electric potential that the
sphere will develap?

Answer

The kinetic energy of the emitted electrons will be

E,=hif—¢
ST

A
=6.63 x107%)

= 0.4 eV
Hence electrons will be emitted until the electric
potential on the sphere becomes 0.4 V, in which
case the attraction of the electrons to the sphere
will be strong enough to prevent further electrons
from escaping.

More on the photon

The energy of the photon is given by the
equation F = hf, which is a relation that is
being directly tested in the photoelectric effect,
The photon also carries momentum, given by
_E _hf _h

S

The existence of a photon momentum is
supported by the Compton effect: the scattering
of photons off electrons or protons. The photon,
although a *particle’” with energy and

momentum, has no mass (it also has zero
electric charge). This implies (because of the
theory of relativity - see Option H) that it
always travels at the speed of light. For such
particles (they are called relativistic), a more
general definition of momentum allows zero-
mass particles to have momentum.

Example questions

T e e T 1]
How many photons of wavelength 5 x 107" m
are emitted per second by a 75 W lamp, assuming
that 1% of the energy of the lamp goes into
photons of this wavelength?

Answer

Let there be N photons per second emitted. Then
the energy is N and this has to be 1% of 75 ),
that is 0.75 J. So, N = 0.19 x 10" photons per
second.

() Ot sl i HT ITTE TSI TSI TR ST
If all the photons from example question 4 hit a
mirrar and are reflected by it, what pressure do
these photons exert on the mirror? Take the area
of the mirror to be 0.5 m*.

Answer

Each photon has a momentum of £ or . The
momentum change upon reflection is 2%, Since
there are N such reflections per second, the force
F on the mirror is 2N2, which is 0.5 x 107" N,
The pressure is thus

F
—=10x10""*Nm™
A x m

{(Mote that if the photons were absorbed rather than
reflected the pressure would be half of what we got.)

We close this section with an observation made
by G. L. Taylor in 1924. Imagine that light (i.e. a
stream of photons) is directed at two slits in a
Young-type experiment. Interference at a screen
some distance away gives the familiar fringes of
high and low intensity. Taylor now argues that
if the intensity of light is reduced sufficiently, a
stage will be reached when only one photon at
a time arrives at the slits. We are now faced
with the problem that a single photon, which
will go through either one slit or the other, somehow
produces the interference pattern on the
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screen. Taylor's observation is a sign that even
when we treat light as photons, its wave nature
is not completely forgotten.

De Broglie’s wavelength

In 1923, Louis de Broglie suggested that to a
particle of momentum p there corresponds a
wave of wavelength given by the formula

_h
P

The de Broglie hypothesis, as this is known, thus
assigns wave-like properties to something that is
normally thought to be a particle, This state of
affairs is called the duality of matter.

A

Example question

(}, e e T p——
Find the de Broglie wavelength of a proton that
has been accelerated from rest by a potential
difference of 500 V.

Answer
The kinetic energy of the proton is given by

JJ
£
2m

The work done in accelerating the proton through
a potential difference V is gV and this work goes
into kinetic energy. Thus

P

=gV
m
= p=+2mgV
Hence
h
A= —
J2mgV
6.63 x 10°%
= — m
-..-"r2 ®x 1.67 = 10-¥ x 1.60 x 10-" % 500
=1.3%10""m

The electron as a wave

The question is, given an electron, when do we
treat it as a particle and when as a wave?
Remember that if we call something a wave

then it must show wave-like properties — in
particular, diffraction. A wave of wavelength A
will diffract around an obstacle of size d if and
only if 4 is comparable to or bigger than d. To
find a typical electron wavelength, consider an
electron moving at a speed of 10°ms '. It hasa
momentum p = 9.1 x 107* kg m s' and
therefore 4 = 7.2 x 107" m. This is quite small.
To see the wave-like nature of this electron we
would need an ‘obstacle’ or an ‘opening’ of
about this size. This is provided in nature by
crystals. In a crystal, the atoms are regularly
placed and the distance between them is
typically of the order of 10 * m. The spacing
between the atoms is the "opening’ we are
looking for. The reason the electron microscope
can resolve small distances (down to 10" * m) is
precisely because these distances are of the
same order of magnitude as the de Broglie
wavelength of the electrons used.

A beam of electrons directed at such a crystal
would scatter off the crystal in much the same
way that X-rays do. The scattering of X-rays off
the periodic arrangement of atoms in a crystal
had been shown earlier (by 5ir William Henry
Bragg) to be the result of diffraction. Bragg
derived a relation (the Bragg formula) between
the spacing of the atoms in the crystal and the
wavelength of the X-rays, so knowing one
quantity made the calculation of the other
possible. (See Figure 4.6.)

) 0. ——
cathode / s ..‘r_r"/ -
anode “ "N | - \

graphite ™. “J

A

%,

phosphor screen

Figure 4.6 Electrons are accelerated from the
cathode to the anode: they form a beam,
which is diffracted as it passes through the
graphite.
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» Experiments showing the wave nature of
the electron were carried out in 1927 by
- Clinton J. Davisson and Lester H. Germer.
- and also by George Thomson, son of
" J.]. Thomson, the discoverer of the
electron. [n the Davisson-Germer
experiment, electrons of kinetic energy
54 eV were directed at a surface of nickel
where a single crystal had been grown
and were scattered by it (see Figure 4.7).
Using the Bragg formula and the known
separation of the crystal atoms allowed
the determination of the wavelength, -
- which was then seen to agree with the de
- Broglie formula.

electron gun

(D detector
electron
beam
crysia! [N

Figure 4.7 The apparatus of Davisson and Germer.
Electrons emitted from the hot filament of the
electron gun are accelerated through a known
potential difference V and are then allowed to
fall on a crystal. The positions of the scattered
electrons are recorded by a detector.

On the other hand, if the wavelength is much
smaller than d, then a particle-like description
would be the appropriate one. Only when an
electron moves inside a crystal whose interatomic
spacing has similar dimensions as the de Broglie
wavelength will diffraction take place.

Thus, one can perform a Young-type two-slit
experiment with both photons and electrons.
What is quite extraordinary about these
experiments is that an interference pattern is
observed beyond the two slits even if the

intensity of light or the electrons is so low that
only one photon or electron goes through the
slits at a time. The photon or electron ‘knows'
of the existence of both slits.

Example question

)7 s sise s =33 STV T T SV SRS
In a neutron diffraction experiment, a beam of
neutrons of energy 85 MeV are incident on a foil
made out of lead and diffracted. The first
difiraction minimum is observed at an angle of

16" relative to the central position where most of
the neutrons are observed. From this information,
determine the size of the lead nucleus.

Answer

The neutrons are diffracted from the lead nuclei,
which act as ‘obstacles’ of size b. From our
knowledge of diffraction, the first minimum is
given by sin # = £, where 4 is the de Broglie
wavelength of the neutron. The mass of a neutron
is m= 1.67 x 10°* kg and, since its kinetic
energy is 85 MeV, the wavelength is & = 2 where

p= JZELm
= 2% 85 x10°x 1.6 x 10-" x 1.67 x 10~
=21.3x10"kgms'

Hence

6.6 x 10~¥
=M
21.3 x% 100
=031 %10 "m

Therefore the size of the nucleus is given by
0,31 % 107 M

- sinl6

=112x 10" m

b m

Questions

1 (a}) Explain what is meant by the photoelectric
effect.
(b} A photosurface has a work function of
3.00 eV. What is the critical frequency?

2 (a) What evidence is there for the existence of
photons?
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(b) A photosurface has a critical frequency
of 2,25 x 10" Hz. What is the voltage
required to stop electrons emitted from
a photosurface when radiation of
frequency 3.87 = 10" Hz falls on this
surface?

3 Light of wavelength 5.4 x 107" m falls on a
photosuriace and causes the emission of
electrons of maximum kinetic energy 2.1 eV
at a rate of 10" per second. The light is
emitted by a 60 W light bulb.

(a) Explain why light causes the emission of
electrons.

(b) Calculate the electric current that leaves
the photosurface.

(c) Find the work function of the surface.

(d) Find the maximum kinetic energy of the
electrons if the intensity of the light
becomes 120 W.

(e) Find the current from the photosurface
when the intensity is 120 W.

4 (a) State three aspects of the photoelectric
effect that cannot be explained by the
wave theory of light. For each, outline
how the photon theory provides an
explanation.

(b) When light of wavelength 2.08 x 107" m
falls on a photosurface, a voltage of 1.40 V
is required to stop the emitted electrons
from reaching the anode. What is the
largest wavelength of light that will result in
emission of electrons from this
photosurface?

5 (a) What is the effect of the intensity of light
in the photoelectric experiment?
(b} To determine the work function of a
given photosurface, light of wavelength
2.3 x 107" m is directed at the surface
and the stopping voltage, \, recorded.
When light of wavelength 1.8 x 107" m
is used, the stopping voltage is twice as
large as the previous one. Find the work
function.
6 Light falling on a metallic surface of work
function 3.0 eV gives energy to the surface at
a rate of 5 x 107* W per square metre of the
metal’s surface. Assume that.an electron on

the metal surface can absorb energy from an

area of about 1.0 x 107" m?,

(al How long will it take the electron to
absorb an amount of energy equal to the
waork function?

(k) What does this imply?

(c) How does the photon theory of light
explain the fact that electrons are emilted
almost instantaneously with the incoming
photons?

7 From the graph of electron kinetic energy
versus frequency of incoming radiation (Figure
4.8), deduce:

(a) the critical frequency of the photosurface;

(b) the work function.

{c) What is the kinetic energy of an electron
ejected when light of frequency f =
8.0 x 10" Hz falls on the surface?

(d) Another photosurface has a critical
frequency of 6.0 x 10" Hz. Sketch on
Figure 4.8 the variation with frequency of
the emitted electrons’ kinetic energy.
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Figure 4.8 For question 7.
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8 Consider a brick of mass 0.250 kg moving al
1M0ms .
(a) What is its de Broglie wavelength?
(b) Does it make sense to treat the brick as a
wave?! Explain.

9 (a) Describe an experiment in which the de
Broglie wavelength of an electron can be
measured directly.

{b) What is the speed of an electron whose de
Broglie wavelength is equal to that of red
light (680 nm)?
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10 (a) Show that the de Broglie wavelength of an

1

(b)

{c)

electron that has been accelerated from
rest through a potential difference Vis

given by
% = h
© V2ZmeV

Calculate the ratio of the de Broglie
wavelength of a proton to that of an alpha
particle when both have been accelerated
from rest by the same potential difference.
Calculate the de Broglie wavelength of an
electron accelerated from rest through a
potential difference of 520 V.

This question will look at the intensity of
radiation in a bit more detail. The intensity of
light, I, incident normally on an area A is
defined to be I = £, where P is the power
carried by the light.

(a)

Show that I = ®hf, where & is the
photon flux density, i.e. the number of

(b)

{c)

(d)

(e

photons incident on the surface per
second per unit area and fis the frequency
of the light.

Calculate the intensity of light of
wavelength & = 5.0 x 107 m incident on a
surface when the photon flux density is

¢ =38x10"m?s".

The wavelength of the light is decreased to
A= 4.0 x 107" m. Calculate the new
photon flux density so that the intensity of
light incident on the surface is the same as
that found in (b).

Hence explain why light of wavelength
A= 4.0 % 107 m and of the same intensity
as that of light of wavelength

A =5.0x107m will result in fewer
electrons being emitted from the surface
per second.

State one assumption made in reaching
this conclusion.
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~AHL - Atomic and nuclear physics

- SL Option B - Quantum physics

Quantum theory and the
uncertainty principle

This chapter introduces the discrete atomic world. We will see that, contrary lo what
occurs in the macroscopic world, the energy of an atom cannot be arbitrary, but rather
assurmes values from a discrete set. An elementary introduction to the Schridinger theory

is given. The Heisenberg uncertainty principle is also discussed.

Objectives

By the end of this chapter you should be able to:

* describe emission and absorption spectra and understand their significance

for atomic structure;

* explain the origin of atomic energy levels in terms of the ‘electron in a box’

model;

* describe the hydrogen atom according to Schrodinger;
* do calculations involving wavelengths of spectral lines and energy level

differences;

* outline the Heisenberg uncertainty principle in terms of

position-momentum and time-energy.

Atomic spectra

When hydrogen gas is heated to a high
temperature or exposed to a high electric field,
it will glow, emitting light. In the laboratory,
this can be seen with a tube of hydrogen whose
ends are at a high potential difference, as
shown in Figure 5.1.

hydrogen gas
e

e
4 }/\M | :;pr:‘cln -muh:a

IlEI-” L rdaa i

Figure 5.1 Hydrogen gas emits light when exposed
to a high potential difference. .

The emitted light may be analysed by letting it
go through a spectrometer. The spectrometer
splits the light that enters it into its component
wavelengths. In the case of hydrogen, the
emitted light consists of a series of bright lines.
A few of the prominent lines and their
wavelengths are shown in Figure 5.2. This is the
emission spectrum of hydrogen. The line with
wavelength 656 nm is red (the H, line), the
line with wavelength 486 nm is blue-green

(the Hy line), and so on.

410 nm 434 nm 486 nm 656 nm
Figure 5.2 A few of the emission lines of hydrogen.
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Similar results are obtained when other gases
replace hydrogen in the tube. The striking
result is that different gases have emission lines
at different wavelengths. Knowing the precise
wavelengths of the emission lines allows the
identification of the gas — emission spectra are
like ‘fingerprints’.

» The spectrum of light that has been emitted by
a gas is called the emission spectrum of the gas.

A similar phenomenon takes place when white
light (consisting of all wavelengths in the visible
region) is allowed to pass through hydrogen gas
(Figure 5.3). White light analysed with a
spectrometer would reveal a continuous band of
the colours of the rainbow. But when the light
that has been transmitted through hydrogen is
analysed, a series of dark lines superimposed on
the continuous band of colours is seen. This is
the absorption spectrum of hydrogen. The dark
lines in the absorption spectrum are at precisely
the same wavelengths as the coloured bright
lines in the emission spectrum of hydrogen.

hydrogen gas

m f W\-r npocl.n.?_r;u_etur

white light transmitted light

Figure 5.3 White light transmitted through a gas
gives rise to the absorption spectrum of the gas.

» The spectrum of light that has been
transmitted through a gas is called the
absorption spectrum of the gas.

The striking feature of emission and absorption
spectra is the fact that the emission and
absorption lines are at specific wavelengths for a
particular gas.

Attempts to explain these curious features
occupied many physicists during the second half
of the nineteenth century, without much success.
In 1885 Johann Balmer discovered, by trial and
error, that the wavelengths in the emission

spectrum of hydrogen were given by the formula

| 11

Rl =

A 4 n?
where n may take the integer values 5. 4,5, ...
and K is a constant number. It thus became a
serious challenge to explain the origin of the

Balmer formula using the basic laws of physics.
All such attempts failed as well.

Since the emitted light from a gas carries
energy, it is reasonable, based on conservation
of energy, to assume that the emitted energy is
equal to the difference between the total energy
of the atom before and after the emission. Since
the emitted light consists of photons of a
specific wavelength, it follows that the emitted
energy is also of a specific amount, since the
energy of a photon is given by

E=hf= h—t

e

These considerations point to the fact that the
energy of an atom is discrete, L.e. not continuous. If
the energy of an atom were continuous, then it
would not make sense for the difference in
energies before and after the emission of light to
be always a set of specific amounts. The idea, then,
was to try to see how the idea of discreteness could
be introduced into the problem.

As a first attempt to see how this might come
about, consider the following simple model.

The ‘electron in a box” model

Imagine that an electron is confined within a
box of linear size | (Figure 5.4). The electron,
treated as a wave, according to de Broglie, has a
wavelength associated with it given by

. h
A==
p
the electron can only be found
somewhere along this line N
x=0 x=L

Figure 5.4 The electron is assumed to be confined
within a linear region of length [ .
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Since the electron cannot escape from the box,
it is reasonable to assume that the electron
wave is zero at the edges of the box. In addition,
since the electron cannot lose energy, it is also
reasonable to assume that the wave associated
with the electron in this case is a standing
wave. S50 we want a standing wave that will have
nodes at x = 0 and at x = L. This implies that
the wavelength must be related to the size | of
the box through

2k
T on

A
where n is an integer.

Therefore the momentum of the electron is

'D:I

h

p1
n
~nh
T2
The kinetic energy is then

2

p
Fp=—
s 2m

by 2
o)

2m

nh?
= 8ml?

This result shows that, because we treated the
electron as a standing wave in a ‘box’, we
deduce that the electron’s energy is
‘quantized’ or discrete, i.e. it cannot have any
arbitrary value. The electron’s kinetic energy
can only be

oy B =
| I = n=1
h?
Ep=<¢4x—— =2
k=14 Xgmiz
h?
i o -
} ® . n=>3

and so on.

It is very interesting that this simple model has
given us what we have been looking for, namely
a discrete set of energies. Of course, the electron
in a ‘box’ is not a realistic model for an electron
in the atom. This is just an example that shows
the discrete nature of the electron energy when
the electron is treated as a wave. The model
points the way to the correct answer.

The Schrodinger theory

After early, and only partially successful,
attempts by Niels Bohr to solve the problem of
the spectrum of hydrogen, in 1926 the Austrian
physicist Erwin Schrodinger (Figure 5.5) provided
a realistic, quantum model for the behaviour of
electrons in atoms. The Schridinger theory
assumes as a basic principle that there is a wave
associated to the electron (very much like de
Broglie had assumed). This wave is called the
wavefunction, (x, ), and is a function of
position x and time {. Given the forces that act
on the electron, it is possible, in principle, to
solve a complicated differential equation obeyed
by the wavefunction (the Schrodinger equation)
and obtain i (x, ). For example, there is one
wavefunction for a free electron, another for an
electron in the hydrogen atom, etc.

Figure 5.5 Erwin Schriadinger.
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» The mtgrp;:etahan of what yr(x. 1) really
__.mcamcamefmmthel}émmpltj‘silﬂs‘t
- Max Born. He suggested that |y (x,0){% -
- {the squamafﬂle absolute value of
- (x.1)) can be used to find the pmbnb:m;v

that an electron will be found near
 position x at time [

The theory only gives probabilities for finding
an electron somewhere - it does not pinpoint an
electron at a particular point in space. This is a
radical change from ordinary, i.e. classical,
physics, where objects have well-defined
positions.

When the Schrodinger theory is applied to the
electron in a hydrogen atom, it gives results
similar to the simple ‘electron in a box'
example of the previous section. In particular, it
predicts that the total energy of the electron
{the sum of the kinetic energy and the electric
potential energy) is given by the formula

E = —
where i1 is an integer and C is a constant equal to
C= 2nmetk?
TR
Here k is the constant in Coulomb’s law, m is
the mass of the electron, ¢ is the charge of the
electron and h is Planck’s constant. Numerically
(using slightly more accurate values than those
listed in Appendix 1) C therefore equals

277(9.109 x 10731)(1.602 x 10-")*(8.988 x 10")?
(6.626 x 10-¥)?

=2.179 x 107"%)
= 13.6 eV

C=

so that finally we obtain
13.6
n2
In other words, the theory predicts that the

electron in the hydrogen atom has quantized
energy. The electron can be found in one of the

F = e\

energy levels of the atom, depending on the
value of the integer n (Figure 5.6a). The model
then also predicts that, if it finds itself at a high
energy level, the electron can make a transition
to a lower level, in the process emitting a photon
of energy equal to the difference in energy
between the levels of the transition (Figure 5.6b).
Because the energy of the photon is given by

E = hf, it follows that knowing the energy level
difference we can calculate the frequency and
wavelength of the emitted photon. Furthermore,
the theory also predicts the probability that a
particular transition will occur. (This is necessary
in order to understand why some spectral lines
are brighter than others.) Thus the Schrodinger
theory explains atomic spectra.

energy
0eV high n energy
: — levels are v